Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan;5(1):109-15.
doi: 10.1096/fasebj.5.1.1991578.

Molecular mapping of human band 3 anion transport regions using synthetic peptides

Affiliations

Molecular mapping of human band 3 anion transport regions using synthetic peptides

M M Kay. FASEB J. 1991 Jan.

Abstract

Band 3 is a ubiquitous membrane transport protein found in Golgi, mitochondrial, nuclear, and cell membranes. It is the most heavily used anion transport system in the body because it is responsible for CO2 exchange in all tissues and organs and for acid-base balance. The anion transport regions are mapped along the band 3 molecule using synthetic peptides (pep) from extracellular regions of band 3 and/or suspected anion transport regions. Assays include anion transport/inhibition and immunoblotting with anti-idiotypic antibodies to a transport inhibitor. Results indicate that anion binding/transport regions of band 3 reside within residues 549-594, (588-594 being the most active) and 804-839 (822-839 being the most active), and 869-883. Pep-COOH (residues 812-827), which is part of senescent cell antigen, is an anion binding site with most of the activity localized to residues 813-818 (the six amino acids on the amino side of pep-COOH). The stilbene disulfonate inhibitors of transport bind to peptide 812-830, and possibly peptides 788-805 and 800-818, as determined with anti-idiotypic antibodies. Residues 538-554, which have been reported to be a transport segment of band 3, do not bind sulfate. Band 3 external loops containing residues 539-553 and 812-830, and internal segments containing residues 588-594 and 869-883, are in close spacial proximity in the membrane. The contribution of lysine and/or arginine to anion transport is examined by synthesizing peptides in which glycines or arginines are substituted for lysines or arginines. Lysines can contribute to anion binding but are not required.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources