Light regulation of metabolic pathways in fungi
- PMID: 19915832
- PMCID: PMC2807966
- DOI: 10.1007/s00253-009-2320-1
Light regulation of metabolic pathways in fungi
Abstract
Light represents a major carrier of information in nature. The molecular machineries translating its electromagnetic energy (photons) into the chemical language of cells transmit vital signals for adjustment of virtually every living organism to its habitat. Fungi react to illumination in various ways, and we found that they initiate considerable adaptations in their metabolic pathways upon growth in light or after perception of a light pulse. Alterations in response to light have predominantly been observed in carotenoid metabolism, polysaccharide and carbohydrate metabolism, fatty acid metabolism, nucleotide and nucleoside metabolism, and in regulation of production of secondary metabolites. Transcription of genes is initiated within minutes, abundance and activity of metabolic enzymes are adjusted, and subsequently, levels of metabolites are altered to cope with the harmful effects of light or to prepare for reproduction, which is dependent on light in many cases. This review aims to give an overview on metabolic pathways impacted by light and to illustrate the physiological significance of light for fungi. We provide a basis for assessment whether a given metabolic pathway might be subject to regulation by light and how these properties can be exploited for improvement of biotechnological processes.
Figures





Similar articles
-
[Epigenetic regulation of secondary metabolite biosynthesis in filamentous fungi: a review].Sheng Wu Gong Cheng Xue Bao. 2011 Aug;27(8):1142-8. Sheng Wu Gong Cheng Xue Bao. 2011. PMID: 22097802 Review. Chinese.
-
Regulation of fungal secondary metabolism.Nat Rev Microbiol. 2013 Jan;11(1):21-32. doi: 10.1038/nrmicro2916. Epub 2012 Nov 26. Nat Rev Microbiol. 2013. PMID: 23178386 Review.
-
Manipulation of fungal development as source of novel secondary metabolites for biotechnology.Appl Microbiol Biotechnol. 2014 Oct;98(20):8443-55. doi: 10.1007/s00253-014-5997-8. Epub 2014 Aug 21. Appl Microbiol Biotechnol. 2014. PMID: 25142695 Free PMC article. Review.
-
Beyond the Biosynthetic Gene Cluster Paradigm: Genome-Wide Coexpression Networks Connect Clustered and Unclustered Transcription Factors to Secondary Metabolic Pathways.Microbiol Spectr. 2021 Oct 31;9(2):e0089821. doi: 10.1128/Spectrum.00898-21. Epub 2021 Sep 15. Microbiol Spectr. 2021. PMID: 34523946 Free PMC article.
-
[Progress in heterologous expression of fungal natural products-A review].Wei Sheng Wu Xue Bao. 2016 Mar 4;56(3):429-40. Wei Sheng Wu Xue Bao. 2016. PMID: 27382786 Review. Chinese.
Cited by
-
The velvet protein Vel1 controls initial plant root colonization and conidia formation for xylem distribution in Verticillium wilt.PLoS Genet. 2021 Mar 15;17(3):e1009434. doi: 10.1371/journal.pgen.1009434. eCollection 2021 Mar. PLoS Genet. 2021. PMID: 33720931 Free PMC article.
-
Blue Light-Dependent Pre-mRNA Splicing Controls Pigment Biosynthesis in the Mushroom Terana caerulea.Microbiol Spectr. 2022 Oct 26;10(5):e0106522. doi: 10.1128/spectrum.01065-22. Epub 2022 Sep 12. Microbiol Spectr. 2022. PMID: 36094086 Free PMC article.
-
Fungal perylenequinones.Mycol Prog. 2022;21(3):38. doi: 10.1007/s11557-022-01790-4. Epub 2022 Apr 4. Mycol Prog. 2022. PMID: 35401071 Free PMC article. Review.
-
Safety of the feed additive consisting of endo-1,4-β-xylanase (produced with Trichoderma reesei CBS 143953), subtilisin (produced with Bacillus subtilis CBS 143946) and α-amylase (produced with Bacillus amyloliquefaciens CBS 143954) (Avizyme® 1505) for all poultry species (Danisco (UK) Ltd.).EFSA J. 2024 May 15;22(5):e8797. doi: 10.2903/j.efsa.2024.8797. eCollection 2024 May. EFSA J. 2024. PMID: 38751508 Free PMC article.
-
Influence of low-intensity artificial light on the fatty acid profile of the biotechnologically important culinary mushroom Pleurotus eryngii in vitro.BMC Biotechnol. 2025 Mar 24;25(1):24. doi: 10.1186/s12896-025-00957-7. BMC Biotechnol. 2025. PMID: 40128685 Free PMC article.
References
-
- Afanasieva TP, Filippovich S, Sokolovsky V, Kritsky MS. Developmental regulation of NAD+ kinase in Neurospora crassa. Arch Microbiol. 1982;133:307–311. - PubMed
-
- Almeida ER, Cerda-Olmedo E. Gene expression in the regulation of carotene biosynthesis in Phycomyces. Curr Genet. 2008;53:129–137. - PubMed
-
- Arpaia G, Cerri F, Baima S, Macino G. Involvement of protein kinase C in the response of Neurospora crassa to blue light. Mol Gen Genet. 1999;262:314–322. - PubMed
-
- Assante G, Merlini L, Nasini G. (+)-Abscisic acid, a metabolite of the fungus Cercospora rosicola. Cell Mol Life Sci. 1977;33:1556–1557.
-
- Avalos J, Cerdà-Olmedo E. Carotenoid mutants of Gibberella fujikuroi. Curr Genet. 1987;11:505–511.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical