Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2009;13(6):R181.
doi: 10.1186/cc8167. Epub 2009 Nov 16.

Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial

Affiliations
Multicenter Study

Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial

Martin W Dünser et al. Crit Care. 2009.

Abstract

Introduction: It is unclear to which level mean arterial blood pressure (MAP) should be increased during septic shock in order to improve outcome. In this study we investigated the association between MAP values of 70 mmHg or higher, vasopressor load, 28-day mortality and disease-related events in septic shock.

Methods: This is a post hoc analysis of data of the control group of a multicenter trial and includes 290 septic shock patients in whom a mean MAP > or = 70 mmHg could be maintained during shock. Demographic and clinical data, MAP, vasopressor requirements during the shock period, disease-related events and 28-day mortality were documented. Logistic regression models adjusted for the geographic region of the study center, age, presence of chronic arterial hypertension, simplified acute physiology score (SAPS) II and the mean vasopressor load during the shock period was calculated to investigate the association between MAP or MAP quartiles > or = 70 mmHg and mortality or the frequency and occurrence of disease-related events.

Results: There was no association between MAP or MAP quartiles and mortality or the occurrence of disease-related events. These associations were not influenced by age or pre-existent arterial hypertension (all P > 0.05). The mean vasopressor load was associated with mortality (relative risk (RR), 1.83; confidence interval (CI) 95%, 1.4-2.38; P < 0.001), the number of disease-related events (P < 0.001) and the occurrence of acute circulatory failure (RR, 1.64; CI 95%, 1.28-2.11; P < 0.001), metabolic acidosis (RR, 1.79; CI 95%, 1.38-2.32; P < 0.001), renal failure (RR, 1.49; CI 95%, 1.17-1.89; P = 0.001) and thrombocytopenia (RR, 1.33; CI 95%, 1.06-1.68; P = 0.01).

Conclusions: MAP levels of 70 mmHg or higher do not appear to be associated with improved survival in septic shock. Elevating MAP >70 mmHg by augmenting vasopressor dosages may increase mortality. Future trials are needed to identify the lowest acceptable MAP level to ensure tissue perfusion and avoid unnecessary high catecholamine infusions.

PubMed Disclaimer

Figures

Figure 1
Figure 1
28-day mortality by MAP and mean vasopressor load quartiles as predicted by the adjusted logistic regression model. Mean arterial blood pressure (MAP) quartile I = 70 to 74.3 mmHg; MAP quartile II = 74.3 to 77.8 mmHg; MAP quartile III = 77.8 to 82.1 mmHg; MAP quartile IV = 82.1 to 99.7 mmHg.
Figure 2
Figure 2
Number of DRE by MAP and mean vasopressor load quartiles as predicted by the adjusted logistic regression model. Mean arterial blood pressure (MAP) quartile I = 70 to 74.3 mmHg; MAP quartile II = 74.3 to 77.8 mmHg; MAP quartile III = 77.8 to 82.1 mmHg; MAP quartile IV = 82.1 to 99.7 mmHg. DRE = disease-related events.

Comment in

References

    1. Guyton AC, Hall JE. Textbook of medical physiology. 10. Philadelphia: Saunders; 2000.
    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327. doi: 10.1097/01.CCM.0000298158.12101.41. - DOI - PubMed
    1. LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–2732. doi: 10.1097/00003246-200008000-00007. - DOI - PubMed
    1. Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;33:780–786. doi: 10.1097/01.CCM.0000157788.20591.23. - DOI - PubMed
    1. Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettilä V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31:1066–1071. doi: 10.1007/s00134-005-2688-z. - DOI - PubMed

Publication types