Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 28;131(42):15412-23.
doi: 10.1021/ja905849a.

Coordination-mode control of bound nitrile radical complex reactivity: intercepting end-on nitrile-Mo(III) radicals at low temperature

Affiliations

Coordination-mode control of bound nitrile radical complex reactivity: intercepting end-on nitrile-Mo(III) radicals at low temperature

Meaghan E Germain et al. J Am Chem Soc. .

Abstract

Variable temperature equilibrium studies were used to derive thermodynamic data for formation of eta(1) nitrile complexes with Mo(N[(t)Bu]Ar)(3), 1. (1-AdamantylCN = AdCN: DeltaH(degrees) = -6 +/- 2 kcal mol(-1), DeltaS(degrees) = -20 +/- 7 cal mol(-1) K(-1). C(6)H(5)CN = PhCN: DeltaH(degrees) = -14.5 +/- 1.5 kcal mol(-1), DeltaS(degrees) = -40 +/- 5 cal mol(-1) K(-1). 2,4,6-(H(3)C)(3)C(6)H(2)CN = MesCN: DeltaH(degrees) = -15.4 +/- 1.5 kcal mol(-1), DeltaS(degrees) = -52 +/- 5 cal mol(-1) K(-1).) Solution calorimetric studies show that the enthalpy of formation of 1-[eta(2)-NCNMe(2)] is more exothermic (DeltaH(degrees) = -22.0 +/- 1.0 kcal mol(-1)). Rate and activation parameters for eta(1) binding of nitriles were measured by stopped flow kinetic studies (AdCN: DeltaH(on)(++) = 5 +/- 1 kcal mol(-1), DeltaS(on)(++) = -28 +/- 5 cal mol(-1) K(-1); PhCN: DeltaH(on)(++) = 5.2 +/- 0.2 kcal mol(-1), DeltaS(on)(++) = -24 +/- 1 cal mol(-1) K(-1); MesCN: DeltaH(on)(++) = 5.0 +/- 0.3 kcal mol(-1), DeltaS(on)(++) = -26 +/- 1 cal mol(-1) K(-1)). Binding of Me(2)NCN was observed to proceed by reversible formation of an intermediate complex 1-[eta(1)-NCNMe(2)] which subsequently forms 1-[eta(2)-NCNMe(2)]: DeltaH(++)(k1) = 6.4 +/- 0.4 kcal mol(-1), DeltaS(++)(k1) = -18 +/- 2 cal mol(-1) K(-1), and DeltaH(++)(k2) = 11.1 +/- 0.2 kcal mol(-1), DeltaS(++)(k2) = -7.5 +/- 0.8 cal mol(-1) K(-1). The oxidative addition of PhSSPh to 1-[eta(1)-NCPh] is a rapid second-order process with activation parameters: DeltaH(++) = 6.7 +/- 0.6 kcal mol(-1), DeltaS(++) = -27 +/- 4 cal mol(-1) K(-1). The oxidative addition of PhSSPh to 1-[eta(2)-NCNMe(2)] also followed a second-order rate law but was much slower: DeltaH(++) = 12.2 +/- 1.5 kcal mol(-1) and DeltaS(++) = -25.4 +/- 5.0 cal mol(-1) K(-1). The crystal structure of 1-[eta(1)-NC(SPh)NMe(2)] is reported. Trapping of in situ generated 1-[eta(1)-NCNMe(2)] by PhSSPh was successful at low temperatures (-80 to -40 degrees C) as studied by stopped flow methods. If 1-[eta(1)-NCNMe(2)] is not intercepted before isomerization to 1-[eta(2)-NCNMe(2)] no oxidative addition occurs at low temperatures. The structures of key intermediates have been studied by density functional theory, confirming partial radical character of the carbon atom in eta(1)-bound nitriles. A complete reaction profile for reversible ligand binding, eta(1) to eta(2) isomerization, and oxidative addition of PhSSPh has been assembled and gives a clear picture of ligand reactivity as a function of hapticity in this system.

PubMed Disclaimer

LinkOut - more resources