Dendritic cell recovery post-lymphodepletion: a potential mechanism for anti-cancer adoptive T cell therapy and vaccination
- PMID: 19921513
- PMCID: PMC3070377
- DOI: 10.1007/s00262-009-0792-6
Dendritic cell recovery post-lymphodepletion: a potential mechanism for anti-cancer adoptive T cell therapy and vaccination
Abstract
Adoptive transfer of autologous tumor-reactive T cells holds promise as a cancer immunotherapy. In this approach, T cells are harvested from a tumor-bearing host, expanded in vitro and infused back to the same host. Conditioning of the recipient host with a lymphodepletion regimen of chemotherapy or radiotherapy before adoptive T cell transfer has been shown to substantially improve survival and anti-tumor responses of the transferred cells. These effects are further enhanced when the adoptive T cell transfer is followed by vaccination with tumor antigens in combination with a potent immune adjuvant. Although significant progress has been made toward an understanding of the reasons underlying the beneficial effects of lymphodepletion to T cell adoptive therapy, the precise mechanisms remain poorly understood. Recent studies, including ours, would indicate a more central role for antigen presenting cells, in particular dendritic cells. Unraveling the exact role of these important cells in mediation of the beneficial effects of lymphodepletion could provide novel pathways toward the rational design of more effective anti-cancer immunotherapy. This article focuses on how the frequency, phenotype, and functions of dendritic cells are altered during the lymphopenic and recovery phases post-induction of lymphodepletion, and how they affect the anti-tumor responses of adoptively transferred T cells.
Figures


References
-
- Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166:678–689. - PubMed
-
- Angulo I, de las Heras FG, Garcia-Bustos JF, Gargallo D, Munoz-Fernandez MA, Fresno M. Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood. 2000;95:212–220. - PubMed
-
- Angulo I, Jimenez-Diaz MB, Garcia-Bustos JF, Gargallo D, de las Heras FG, Munoz-Fernandez MA, Fresno M. Candida albicans infection enhances immunosuppression induced by cyclophosphamide by selective priming of suppressive myeloid progenitors for NO production. Cell Immunol. 2002;218:46–58. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources