Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov 26;113(47):15670-8.
doi: 10.1021/jp906847p.

Frequency and effect of the binding of Mg2+, Mn2+, and Co2+ ions on the guanine base in Watson-Crick and reverse Watson-Crick base pairs

Affiliations

Frequency and effect of the binding of Mg2+, Mn2+, and Co2+ ions on the guanine base in Watson-Crick and reverse Watson-Crick base pairs

Romina Oliva et al. J Phys Chem B. .

Abstract

We performed MP2 calculations to elucidate the structure and energetics of the Mg(2+), Mn(2+), and Co(2+) hexahydrated aquaions, and the effect of the metal binding to the N7 atom of (i) a single guanine, (ii) a guanine involved in a Watson-Crick pair, and (iii) a guanine involved in a reverse Watson-Crick base pair. Our comparative analysis of the three aquaions indicates a clear inverse correlation between the radius of the cation and the binding energy, that indeed increases in the order Mn(2+) < Co(2+) < Mg(2+). The trend in the binding energies of the pentahydrated cations to the N7 atom of the guanine is instead Mg(2+) < Mn(2+) < Co(2+), suggesting a rather different bonding scheme that, for the two transition metals, involves back-donation from the aromatic ring of the guanine to their empty d orbitals. In the gas phase, the three hydrated metals significantly stabilize both G-C base pair geometries, Watson-Crick and reverse Watson-Crick, we investigated. Inclusion of a continuous solvent model, however, remarkably reduces this additional stabilization, which becomes almost negligible in the case of the Mg(2+) cation coordinated to the guanine in the standard Watson-Crick geometry. Conversely, all three metal ions sensibly stabilize the reverse Watson-Crick geometry, also in water. Our results are supported by a screening of the structures available in the Protein Data Bank, which clearly indicates that the two transition metals we investigated have a tendency greater than Mg(2+) to coordinate to the N7 atom of guanines, and that there is no clear correlation between the number of guanines in experimental structures with a metal bound to N7 atom and their involvement in Watson-Crick base pairs.

PubMed Disclaimer

Publication types

LinkOut - more resources