Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 31;96(2):159-65.
doi: 10.1016/j.aquatox.2009.10.019. Epub 2009 Oct 23.

Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis)

Affiliations

Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis)

Katrine Bilberg et al. Aquat Toxicol. .

Abstract

Silver nanoparticles are utilised in an increasing amount of products, and discharge to the aquatic environment is inevitable. Fish gills are in direct contact with the ambient water, making them potential exposed and vulnerable to suspended silver nanoparticles. The present study investigates the effect of silver nanoparticles (average 81 nm) on the oxygen consumption (M(O2)) in Eurasian perch (Perca fluviatilis), expressed by the basal metabolic rate (BMR) and the critical oxygen tension (P(crit)) below which the fish can no longer maintain aerobic metabolism. For comparison, the impact of silver nitrate (AgNO(3)), was examined as well. Perch were exposed to nominal concentrations of 63, 129 and 300 microg L(-1) silver nanoparticles and 39 and 386 microg L(-1) AgNO(3), respectively, plus controls which were not exposed to silver. M(O2) measured by automated intermittent closed respirometry. After one day acclimatization in the respirometer, the pre-exposure BMR was determined together with P(crit). Hereafter, nanoparticles or silver nitrate were added to the test tank and BMR and P(crit) were measured again the following day. The results demonstrate that nanosilver had no impact on the BMR, whereas exposure to 386 microg L(-1) AgNO(3) resulted in a significant raise in BMR. P(crit) was increased approximately 50% after exposure to 300 microg L(-1) nanosilver plus 31% and 48% by 39 microg L(-1)and 386 microg L(-1) silver nitrate, respectively. These findings reveal that exposure to nanosilver results in impairment of the tolerance to hypoxia. Possibly, nanosilver affects the gills externally, reducing the diffusion conductance which then leads to internal hypoxia during low water oxygen tensions (P(O2)).

PubMed Disclaimer

Publication types

LinkOut - more resources