In vitro and in vivo studies of the RNA conformational switch in Alfalfa mosaic virus
- PMID: 19923185
- PMCID: PMC2812317
- DOI: 10.1128/JVI.01443-09
In vitro and in vivo studies of the RNA conformational switch in Alfalfa mosaic virus
Abstract
The 3' termini of Alfalfa mosaic virus (AMV) RNAs adopt two mutually exclusive conformations, a coat protein binding (CPB) and a tRNA-like (TL) conformer, which consist of a linear array of stem-loop structures and a pseudoknot structure, respectively. Previously, switching between CPB and TL conformers has been proposed as a mechanism to regulate the competing processes of translation and replication of the viral RNA (R. C. L. Olsthoorn et al., EMBO J. 18:4856-4864, 1999). In the present study, the switch between CPB and TL conformers was further investigated. First, we showed that recognition of the AMV 3' untranslated region (UTR) by a tRNA-specific enzyme (CCA-adding enzyme) in vitro is more efficient when the distribution is shifted toward the TL conformation. Second, the recognition of the 3' UTR by the viral replicase was similarly dependent on the ratio of CBP and TL conformers. Furthermore, the addition of CP, which is expected to shift the distribution toward the CPB conformer, inhibited recognition by the CCA-adding enzyme and the replicase. Finally, we monitored how the binding affinity to CP is affected by this conformational switch in the yeast three-hybrid system. Here, disruption of the pseudoknot enhanced the binding affinity to CP by shifting the balance in favor of the CPB conformer, whereas stabilizing the pseudoknot did the reverse. Together, the in vitro and in vivo data clearly demonstrate the existence of the conformational switch in the 3' UTR of AMV RNAs.
Figures
References
-
- Aparicio, F., M. Vilar, E. Perez-Payá, and V. Pallás. 2003. The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA. Virology 313:213-223. - PubMed
-
- Bernstein, D. S., N. Buter, C. Stumpf, and M. Wickens. 2002. Analyzing RNA-protein complexes using a yeast three-hybrid system. Methods 26:123-141. - PubMed
-
- Bol, J. F. 2005. Replication of alfamo- and ilarviruses: role of the coat protein. Annu. Rev. Phytopathol. 43:39-62. - PubMed
-
- Chen, S. C., A. P. Gultyaev, C. W. A. Pleij, and R. C. L. Olsthoorn. 2009. A secondary structure model for the 3′-untranslated region of ilarvirus RNAs. In Z. Feng and M. Long (ed.), Viral genomes: diversity, properties and parameters. Nova Science Publishers, Hauppage, NY.
-
- de Graaff, M., M. R. Man in't Veld, and E. M. J. Jaspars. 1995. In vitro evidence that the coat protein of alfalfa mosaic virus plays a direct role in the regulation of plus and minus RNA synthesis: implications for the life cycle of alfalfa mosaic virus. Virology 208:583-589. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
