Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;51(1):21-37.
doi: 10.1093/pcp/pcp163. Epub 2009 Nov 18.

Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.)

Affiliations

Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.)

Jed A Christianson et al. Plant Cell Physiol. 2010 Jan.

Abstract

Waterlogging stress causes yield reduction in cotton (Gossypium hirsutum L.). A major component of waterlogging stress is the lack of oxygen available to submerged tissues. While changes in expressed protein, gene transcription and metabolite levels have been studied in response to low oxygen stress, little research has been done on molecular responses to waterlogging in cotton. We assessed cotton growth responses to waterlogging and assayed global gene transcription responses in root and leaf cotton tissues of partially submerged plants. Waterlogging caused significant reductions in stem elongation, shoot mass, root mass and leaf number, and altered the expression of 1,012 genes (4% of genes assayed) in root tissue as early as 4 h after flooding. Many of these genes were associated with cell wall modification and growth pathways, glycolysis, fermentation, mitochondrial electron transport and nitrogen metabolism. Waterlogging of plant roots also altered global gene expression in leaf tissues, significantly changing the expression of 1,305 genes (5% of genes assayed) after 24 h of flooding. Genes affected were associated with cell wall growth and modification, tetrapyrrole synthesis, hormone response, starch metabolism and nitrogen metabolism The implications of these results for the development of waterlogging-tolerant cotton are discussed.

PubMed Disclaimer

Publication types

MeSH terms