The structure of Mg-ATPase nucleotide-binding domain at 1.6 A resolution reveals a unique ATP-binding motif
- PMID: 19923713
- DOI: 10.1107/S090744490903306X
The structure of Mg-ATPase nucleotide-binding domain at 1.6 A resolution reveals a unique ATP-binding motif
Abstract
The structure of the nucleotide-binding domain of the Mg-ATPase MgtA from Escherichia coli has been solved and refined to 1.6 A resolution. The structure is made up of a six-stranded beta-sheet and a bundle of three alpha-helices, with the nucleotide-binding site sandwiched in between. The MgtA nucleotide-binding domain is shorter and more compact compared with that of the related Ca-ATPase and lacks one of the beta-strands at the edge of the beta-sheet. The ATP-binding pocket is surrounded by three sequence and structural motifs known from other P-type ATPases and a fourth unique motif that is found only in Mg-ATPases. This motif consists of a short polypeptide stretch running very close to the ATP-binding site, while in Ca-ATPase the binding site is more open, with the corresponding polypeptide segment folded away from the active site.
Similar articles
-
Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.J Mol Biol. 2002 May 10;318(4):1127-37. doi: 10.1016/S0022-2836(02)00188-2. J Mol Biol. 2002. PMID: 12054807
-
Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes.J Mol Biol. 2004 Oct 1;342(5):1547-58. doi: 10.1016/j.jmb.2004.07.060. J Mol Biol. 2004. PMID: 15364580
-
The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.Biochem J. 2004 Jan 1;377(Pt 1):95-105. doi: 10.1042/BJ20030740. Biochem J. 2004. PMID: 14510639 Free PMC article.
-
ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments.Proteins. 2006 Jul 1;64(1):1-12. doi: 10.1002/prot.20969. Proteins. 2006. PMID: 16649212 Review.
-
Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation.Res Microbiol. 2004 Oct;155(8):623-9. doi: 10.1016/j.resmic.2004.05.016. Res Microbiol. 2004. PMID: 15380549 Review.
Cited by
-
P-type ATPase magnesium transporter MgtA acts as a dimer.Nat Struct Mol Biol. 2025 Jun 23. doi: 10.1038/s41594-025-01593-7. Online ahead of print. Nat Struct Mol Biol. 2025. PMID: 40550995
-
Molecular mechanism of Mg-ATPase activity.J Membr Biol. 2015 Apr;248(2):295-300. doi: 10.1007/s00232-014-9769-2. Epub 2015 Jan 8. J Membr Biol. 2015. PMID: 25567360
-
Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media?J Biomol NMR. 2011 Sep;51(1-2):131-50. doi: 10.1007/s10858-011-9548-7. Epub 2011 Sep 27. J Biomol NMR. 2011. PMID: 21947922 Free PMC article.
-
Structural and functional comparison of magnesium transporters throughout evolution.Cell Mol Life Sci. 2022 Jul 12;79(8):418. doi: 10.1007/s00018-022-04442-8. Cell Mol Life Sci. 2022. PMID: 35819535 Free PMC article. Review.
-
Magnesium Transporter MgtA revealed as a Dimeric P-type ATPase.bioRxiv [Preprint]. 2024 Feb 29:2024.02.28.582502. doi: 10.1101/2024.02.28.582502. bioRxiv. 2024. Update in: Nat Struct Mol Biol. 2025 Jun 23. doi: 10.1038/s41594-025-01593-7. PMID: 38464158 Free PMC article. Updated. Preprint.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases