Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Dec;5(12):832-8.
doi: 10.4161/hv.10297. Epub 2009 Dec 11.

Vaccines against tularemia

Affiliations
Review

Vaccines against tularemia

Eileen M Barry et al. Hum Vaccin. 2009 Dec.

Abstract

Francisella tularensis is a Category A select agent for which vaccine and countermeasure development are a priority. In the past eight years, renewed interest in this pathogen has led to the generation of an enormous amount of new data on both the pathogen itself and its interaction with host cells. This information has fostered the development of various vaccine candidates including acellular subunit, killed whole cell and live attenuated. This review summarizes the progress and promise of these various candidates.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alkhuder K, Meibom KL, Dubail I, Dupuis M, Charbit A. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathog. 2009;5:1000284. - PMC - PubMed
    1. Aronova NV, Pavlovich NV. Phase variations of Francisella tularensis lipopolysaccharide in human infection and immunization. Zh Mikrobiol Epidemiol Immunobiol. 2005:8–12. - PubMed
    1. Bakshi CS, Malik M, Mahawar M, Kirimanjeswara GS, Hazlett KR, Palmer LE, et al. An improved vaccine for prevention of respiratory tularemia caused by Francisella tularensis SchuS4 strain. Vaccine. 2008;26:5276–88. - PMC - PubMed
    1. Bakshi CS, Malik M, Regan K, Melendez JA, Metzger DW, Pavlov VM, Sellati TJ. Superoxide dismutase B gene (sodB)-deficient mutants of Francisella tularensis demonstrate hypersensitivity to oxidative stress and attenuated virulence. J Bacteriol. 2006;188:6443–8. - PMC - PubMed
    1. Balagopal A, MacFarlane AS, Mohapatra N, Soni S, Gunn JS, Schlesinger LS. Characterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages. Infect Immun. 2006;74:5114–25. - PMC - PubMed

MeSH terms

LinkOut - more resources