Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov 19;462(7271):339-41.
doi: 10.1038/nature08569.

Ultraflat graphene

Affiliations

Ultraflat graphene

Chun Hung Lui et al. Nature. .

Abstract

Graphene, a single atomic layer of carbon connected by sp(2) hybridized bonds, has attracted intense scientific interest since its recent discovery. Much of the research on graphene has been directed towards exploration of its novel electronic properties, but the structural aspects of this model two-dimensional system are also of great interest and importance. In particular, microscopic corrugations have been observed on all suspended and supported graphene sheets studied so far. This rippling has been invoked to explain the thermodynamic stability of free-standing graphene sheets. Many distinctive electronic and chemical properties of graphene have been attributed to the presence of ripples, which are also predicted to give rise to new physical phenomena that would be absent in a planar two-dimensional material. Direct experimental study of such novel ripple physics has, however, been hindered by the lack of flat graphene layers. Here we demonstrate the fabrication of graphene monolayers that are flat down to the atomic level. These samples are produced by deposition on the atomically flat terraces of cleaved mica surfaces. The apparent height variation in the graphene layers observed by high-resolution atomic force microscopy (AFM) is less than 25 picometres, indicating the suppression of any existing intrinsic ripples in graphene. The availability of such ultraflat samples will permit rigorous testing of the impact of ripples on various physical and chemical properties of graphene.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 2007 May 29;104(22):9209-12 - PubMed
    1. Phys Rev Lett. 2008 Feb 1;100(4):046403 - PubMed
    1. Nat Mater. 2007 Nov;6(11):858-61 - PubMed
    1. Phys Rev Lett. 2006 Jul 7;97(1):016801 - PubMed
    1. Phys Rev Lett. 2009 Feb 20;102(7):076102 - PubMed

Publication types

LinkOut - more resources