Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov 1;43(21):8393-9.
doi: 10.1021/es901166m.

Effect of acute copper sulfate exposure on olfactory responses to amino acids and pheromones in goldfish (Carassius auratus)

Affiliations

Effect of acute copper sulfate exposure on olfactory responses to amino acids and pheromones in goldfish (Carassius auratus)

Nikolay N Kolmakov et al. Environ Sci Technol. .

Abstract

Exposure of olfactory epithelium to environmentally relevant concentrations of copper disrupts olfaction in fish. To examine the dynamics of recovery at both functional and morphological levels after acute copper exposure, unilateral exposure of goldfish olfactory epithelia to 100 microM CuSO(4) (10 min) was followed by electro-olfactogram (EOG) recording and scanning electron microscopy. Sensitivity to amino acids (l-arginine and l-serine), generally considered food-related odorants, recovered most rapidly (three days), followed by that to catecholamines (3-O-methoxytyramine), bile acids (taurolithocholic acid) and the steroid pheromone, 17,20beta-dihydroxy-4-pregnen-3-one 20-sulfate, which took 28 days to reach full recovery. Sensitivity to the postovulatory pheromone prostaglandin F(2alpha) had not fully recovered even at 28 days. These changes in sensitivity were correlated with changes in the recovery of ciliated and microvillous receptor cell types. Microvillous cells appeared largely unaffected by CuSO(4) treatment. Cilia in ciliated receptor neurones, however, appeared damaged one day post-treatment and were virtually absent after three days but had begun to recover after 14 days. Together, these results support the hypothesis that microvillous receptor neurones detect amino acids whereas ciliated receptor neurones were not functional and are responsible for detection of social stimuli (bile acids and pheromones). Furthermore, differences in sensitivity to copper may be due to different transduction pathways in the different cell types.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources