Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been
- PMID: 19933148
- PMCID: PMC2779761
- DOI: 10.1101/gad.1854309
Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been
Abstract
Sterol regulatory element-binding proteins (SREBPs) are a subfamily of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors that are conserved from fungi to humans and are defined by two key features: a signature tyrosine residue in the DNA-binding domain, and a membrane-tethering domain that is a target for regulated proteolysis. Recent studies including genome-wide and model organism approaches indicate SREBPs coordinate cellular lipid metabolism with other cellular physiologic processes. These functions are broadly related as cellular adaptation to environmental changes ranging from nutrient fluctuations to toxin exposure. This review integrates classic features of the SREBP pathway with newer information regarding the regulation and sensing mechanisms that serve to assimilate different cellular physiologic processes for optimal function and growth.
Figures



References
-
- Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature. 2003;421:268–272. - PubMed
-
- Bartz F, Kern L, Erz D, Zhu M, Gilbert D, Meinhof T, Wirkner U, Erfle H, Muckenthaler M, Pepperkok R, et al. Identification of cholesterol-regulating genes by targeted RNAi screening. Cell Metab. 2009;10:63–75. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources