Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 15;19(4):563-72.
doi: 10.1093/hmg/ddp523. Epub 2009 Nov 20.

Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand beta-glucocerebrosidase

Affiliations

Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand beta-glucocerebrosidase

Judith Blanz et al. Hum Mol Genet. .

Abstract

Action myoclonus-renal failure syndrome (AMRF) is caused by mutations in the lysosomal integral membrane protein type 2 (LIMP-2/SCARB2). LIMP-2 was identified as a sorting receptor for beta-glucocerebrosidase (beta-GC), which is defective in Gaucher disease. To date, six AMRF-causing mutations have been described, including splice site, missense and nonsense mutations. All mutations investigated in this study lead to a retention of LIMP-2 in the endoplasmic reticulum (ER) but affect the binding to beta-GC differentially. From the three nonsense mutations, only the Q288X mutation was still able to bind to beta-GC as efficiently as compared with wild-type LIMP-2, whereas the W146SfsX16 and W178X mutations lost their beta-GC-binding capacity almost completely. The LIMP-2 segment 145-288, comprising the nonsense mutations, contains a highly conserved coiled-coil domain, which we suggest determines beta-GC binding. In fact, disruption of the helical arrangement and amphiphatic nature of the coiled-coil domain abolishes beta-GC binding, and a synthetic peptide comprising the coiled-coil domain of LIMP-2 displays pH-selective multimerization properties. In contrast to the reduced binding properties of the nonsense mutations, the only missense mutation (H363N) found in AMRF leads to increased binding of beta-GC to LIMP-2, indicating that this highly conserved histidine modifies the affinity of LIMP-2 to its ligand. With the present study, we demonstrate that disruption of the coiled-coil structure or AMRF disease-causing mutations abolish beta-GC binding, indicating the importance of an intact coiled-coil structure for the interaction of LIMP-2 and beta-GC.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms