Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Dec;234(12):1395-416.
doi: 10.3181/0904-MR-135.

Cardiovascular applications of hyperpolarized contrast media and metabolic tracers

Affiliations
Free article
Review

Cardiovascular applications of hyperpolarized contrast media and metabolic tracers

Pratip Bhattacharya et al. Exp Biol Med (Maywood). 2009 Dec.
Free article

Abstract

Modern hyperpolarization technology enhances the recordable magnetic resonance signal four to five orders of magnitude, making in vivo assessments of tracer pathways and metabolic compartments feasible. Existing hyperpolarization instrumentation and previous tracer studies using hydroxyethylpropionate (HEP) as an extracellular marker and 14-carbon label pyruvate as examples are described and reviewed as applicable to the working heart. Future metabolic imaging based on the use of hyperpolarized pyruvate needs to consider extra- and intra-cellular label dilution due to glycolysis, lactate oxidation and protein degradation. This dilution can substantially decrease the recordable signals from PDH flux (oxidative decarboxylation of pyruvate) and other pyruvate pathways. The review of previous literature and data suggests that the (13)C-alanine signal is a better index of mitochondrially oxidized pyruvate than L-lactate. These facts and considerations will help in the interpretation of the in vivo recorded hyperpolarization signals of metabolic tracers and contrast media.

PubMed Disclaimer

Publication types