Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy
- PMID: 19936034
- PMCID: PMC2779029
- DOI: 10.2174/157339406777934717
Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy
Abstract
Bone marrow (BM) suppression is the important dose-limiting side effect of chemotherapy and radiotherapy for cancer. Although acute myelosuppression is an immediate concern for patients undergoing cancer therapy, its management has been improved significantly in recent years by the use of various hematopoietic growth factors. However, many patients receiving chemotherapy and/or ionizing radiation (IR) also develop residual (or long-term) BM injury (a sustained decrease in HSC reserves due to an impairment in HSC self-renewal) after the recovery from acute myelosuppression. Unlike acute myelosuppression, residual BM injury is latent and long lasting and shows little tendency for recovery. Following additional hematopoietic stress such as subsequent cycles of consolidation cancer treatment or autologous BM transplantation, residual BM injury can deteriorate to become a hypoplastic or myelodysplastic syndrome. This article review some of the new developments in elucidating the cellular and molecular mechanisms whereby chemotherapy and radiotherapy cause residual BM injury. Particularly, we discuss the role of induction of hematopoietic stem cell (HSC) senescence via the p53-p21(Cip1/Waf1) and/or p16(Ink4a)-RB pathways in the induction of the injury and the therapeutic potential of molecularly targeting these pathways for amelioration of chemotherapy- and radiotherapy-induced long-term BM toxicity.
Figures
References
-
- Lyman GH, Dale DC, Crawford J. Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: a nationwide study of community practices. J Clin Oncol. 2003;21:4524–4531. - PubMed
-
- Lyman GH, Dale DC, Friedberg J, Crawford J, Fisher RI. Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin’s lymphoma: a nationwide study. J Clin Oncol. 2004;22:4302–4311. - PubMed
-
- Reya T. Regulation of hematopoietic stem cell self-renewal. Recent Prog Horm Res. 2003;58:283–295. - PubMed
-
- Smith C. Hematopoietic stem cells and hematopoiesis. Cancer Control. 2003;10:9–16. - PubMed
-
- Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17:387–403. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous