Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;6(11):1812-21.
doi: 10.1002/cbdv.200900153.

In silico pKa prediction and ADME profiling

Affiliations

In silico pKa prediction and ADME profiling

Gabriele Cruciani et al. Chem Biodivers. 2009 Nov.

Abstract

Improving the ADME profile of drug candidates is a critical step in lead optimization, and because pKa affects most ADME properties such as lipophilicity, solubility, and metabolism, it is extremely advantageous to predict pKa in order to guide the design of new compounds. However, accurately (<0.5 log units) predicting pKa by empirical methods can be challenging especially for novel series, because of lack of knowledge on determinants of pKa (steric effects, ring effects, H-bonding, etc.), and because of limited experimental data on the effects of specific chemical groups on the ionization of an atom. To address these issues, we recently developed the computational package MoKa, which integrates graphical and command line tools designed for computational and medicinal chemists to predict the pKa values of organic compounds. Here, we present the major issues considered when we developed MoKa, such as the accurate selection of training data, the fundamentals of the methodology (which has also been extended to predict protein pKa), the treatment of multiprotic compounds, and the selection of the dominant tautomer for the calculation. Last, we illustrate some specific applications of MoKa to predict solubility, lipophilicity, and metabolism.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources