Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 25;11(2):228-34.
doi: 10.1002/cbic.200900502.

Galectin-1-asialofetuin interaction is inhibited by peptides containing the tyr-xxx-tyr motif acting on the glycoprotein

Affiliations

Galectin-1-asialofetuin interaction is inhibited by peptides containing the tyr-xxx-tyr motif acting on the glycoprotein

Edit Wéber et al. Chembiochem. .

Abstract

Galectin-1 (Gal-1), a ubiquitous beta-galactoside-binding protein expressed by various normal and pathological tissues, has been implicated in cancer and autoimmune/inflammatory diseases in consequence of its regulatory role in adhesion, cell viability, proliferation, and angiogenesis. The functions of Gal-1 depend on its affinity for beta-galactoside-containing glycoconjugates; accordingly, the inhibition of sugar binding blocks its functions, hence promising potential therapeutic tools. The Tyr-Xxx-Tyr peptide motifs have been reported to be glycomimetic sequences, mainly on the basis of their inhibitory effect on the Gal-1-asialofetuin (ASF) interaction. However, the results regarding the efficacy of the Tyr-Xxx-Tyr motif as a glycomimetic inhibitor are still controversial. The present STD and trNOE NMR experiments reveal that the Tyr-Xxx-Tyr peptides studied do not bind to Gal-1, whereas their binding to ASF is clearly detected. (15)N,(1)H HSQC titrations with (15)N-labeled Gal-1 confirm the absence of any peptide-Gal-1 interaction. These data indicate that the Tyr-Xxx-Tyr peptides tested in this work are not glycomimetics as they interact with ASF via an unrevealed molecular linkage.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources