Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Jan;17(1):51-69.
doi: 10.1002/jemt.1060170107.

Secretory pathways in animal cells: with emphasis on pancreatic acinar cells

Affiliations
Review

Secretory pathways in animal cells: with emphasis on pancreatic acinar cells

A R Beaudoin et al. J Electron Microsc Tech. 1991 Jan.

Abstract

Studies over the past three decades have clearly established the existence of at least two distinct pathways for the intracellular transport and release of secretory proteins by animal cells. These have been identified as the regulated and constitutive pathways. Many observations have indicated that in certain cells, such as those of the exocrine pancreas and parotid glands at least, these pathways coexist in the same cells. Although the general scheme of protein transport within these pathways is well established, many fundamental aspects of intracellular transport remain to be unraveled. How are proteins transported through the endoplasmic reticulum? How are the transitional vesicles formed and what are the underlying mechanisms involved in their fusion with the cis-Golgi cisterna? Even the general mode of transfer through the Golgi stack is debated: Is there a diffusion through the stack by flow through intercisternal tubules and openings or is there a vesicle transfer system where membrane quanta hop from one cisterna to the other? What is the fate of secretory proteins in the trans-Golgi area and by what mechanisms is a fraction of newly synthesized molecules of a given secretory protein released spontaneously while the majority of such nascent molecules are diverted into a secretory granule compartment? In this review, we have examined these and other aspects of intracellular transport of secretory proteins using pancreatic acinar cells as our reference model and we present some evidence to support the existence of a paragranular pathway of secretion associated with secretory granule maturation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources