The process-inducing activity of transmembrane agrin requires follistatin-like domains
- PMID: 19940118
- PMCID: PMC2823450
- DOI: 10.1074/jbc.M109.039420
The process-inducing activity of transmembrane agrin requires follistatin-like domains
Abstract
Clustering or overexpression of the transmembrane form of the extracellular matrix proteoglycan agrin in neurons results in the formation of numerous highly motile filopodia-like processes extending from axons and dendrites. Here we show that similar processes can be induced by overexpression of transmembrane-agrin in several non-neuronal cell lines. Mapping of the process-inducing activity in neurons and non-neuronal cells demonstrates that the cytoplasmic part of transmembrane agrin is dispensable and that the extracellular region is necessary for process formation. Site-directed mutagenesis reveals an essential role for the loop between beta-sheets 3 and 4 within the Kazal subdomain of the seventh follistatin-like domain of TM-agrin. An aspartic acid residue within this loop is critical for process formation. The seventh follistatin-like domain could be functionally replaced by the first and sixth but not by the eighth follistatin-like domain, demonstrating a functional redundancy among some follistatin-like domains of agrin. Moreover, a critical distance of the seventh follistatin-like domain to the plasma membrane appears to be required for process formation. These results demonstrate that different regions within the agrin protein are responsible for synapse formation at the neuromuscular junction and for process formation in central nervous system neurons and suggest a role for agrin's follistatin-like domains in the developing central nervous system.
Figures







Similar articles
-
Alternative Splicing and the Intracellular Domain Mediate TM-agrin's Ability to Differentially Regulate the Density of Excitatory and Inhibitory Synapse-like Specializations in Developing CNS Neurons.Neuroscience. 2019 Nov 1;419:60-71. doi: 10.1016/j.neuroscience.2019.09.011. Epub 2019 Oct 28. Neuroscience. 2019. PMID: 31672640
-
Induction of filopodia-like protrusions by transmembrane agrin: role of agrin glycosaminoglycan chains and Rho-family GTPases.Exp Cell Res. 2010 Aug 15;316(14):2260-77. doi: 10.1016/j.yexcr.2010.05.006. Epub 2010 May 13. Exp Cell Res. 2010. PMID: 20471381 Free PMC article.
-
Electron microscopic structure of agrin and mapping of its binding site in laminin-1.EMBO J. 1998 Jan 15;17(2):335-43. doi: 10.1093/emboj/17.2.335. EMBO J. 1998. PMID: 9430625 Free PMC article.
-
Functions of agrin and agrin-related proteins.Trends Neurosci. 1993 Feb;16(2):76-81. doi: 10.1016/0166-2236(93)90021-d. Trends Neurosci. 1993. PMID: 7680504 Review.
-
Nerve, Muscle, and Synaptogenesis.Cells. 2019 Nov 16;8(11):1448. doi: 10.3390/cells8111448. Cells. 2019. PMID: 31744142 Free PMC article. Review.
Cited by
-
Deconstruction of Neurotrypsin Reveals a Multi-factorially Regulated Activity Affecting Myotube Formation and Neuronal Excitability.Mol Neurobiol. 2022 Dec;59(12):7466-7485. doi: 10.1007/s12035-022-03056-2. Epub 2022 Oct 5. Mol Neurobiol. 2022. PMID: 36197591 Free PMC article.
-
Rare disease research workflow using multilayer networks elucidates the molecular determinants of severity in Congenital Myasthenic Syndromes.Nat Commun. 2024 Feb 28;15(1):1227. doi: 10.1038/s41467-024-45099-0. Nat Commun. 2024. PMID: 38418480 Free PMC article.
-
The role of agrin in synaptic development, plasticity and signaling in the central nervous system.Neurochem Int. 2012 Nov;61(6):848-53. doi: 10.1016/j.neuint.2012.02.028. Epub 2012 Mar 5. Neurochem Int. 2012. PMID: 22414531 Free PMC article. Review.
-
Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers.Front Mol Biosci. 2020 Jan 10;6:156. doi: 10.3389/fmolb.2019.00156. eCollection 2019. Front Mol Biosci. 2020. PMID: 31998752 Free PMC article. Review.
-
Agrin binds BMP2, BMP4 and TGFbeta1.PLoS One. 2010 May 21;5(5):e10758. doi: 10.1371/journal.pone.0010758. PLoS One. 2010. PMID: 20505824 Free PMC article.
References
-
- Bezakova G., Ruegg M. A. (2003) Nat. Rev. Mol. Cell Biol. 4, 295–308 - PubMed
-
- Kröger S., Pfister H. (2009) Fut. Neurol. 4, 67–86
-
- Sanes J. R., Lichtman J. W. (2001) Nat. Rev. Neurosci. 2, 791–805 - PubMed
-
- Gautam M., Noakes P. G., Moscoso L., Rupp F., Scheller R. H., Merlie J. P., Sanes J. R. (1996) Cell 85, 525–535 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials