Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
- PMID: 19940131
- PMCID: PMC2823454
- DOI: 10.1074/jbc.M109.077271
Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
Abstract
Since the discovery of NAD-dependent deacetylases, sirtuins, it has been recognized that maintaining intracellular levels of NAD is crucial for the management of stress response of cells. Here we show that agonist-induced cardiac hypertrophy is associated with loss of intracellular levels of NAD, but not exercise-induced physiologic hypertrophy. Exogenous addition of NAD was capable of maintaining intracellular levels of NAD and blocking the agonist-induced cardiac hypertrophic response in vitro as well as in vivo. NAD treatment blocked the activation of pro-hypertrophic Akt1 signaling, and augmented the activity of anti-hypertrophic LKB1-AMPK signaling in the heart, which prevented subsequent induction of mTOR-mediated protein synthesis. By using gene knock-out and transgenic mouse models of SIRT3 and SIRT1, we showed that the anti-hypertrophic effects of exogenous NAD are mediated through activation of SIRT3, but not SIRT1. SIRT3 deacetylates and activates LKB1, thus augmenting the activity of the LKB1-AMPK pathway. These results reveal a novel role of NAD as an inhibitor of cardiac hypertrophic signaling, and suggest that prevention of NAD depletion may be critical in the treatment of cardiac hypertrophy and heart failure.
Figures







Similar articles
-
NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway.Cell Physiol Biochem. 2011;27(6):681-90. doi: 10.1159/000330077. Epub 2011 Jun 17. Cell Physiol Biochem. 2011. PMID: 21691086
-
SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy.Circulation. 2017 Nov 21;136(21):2051-2067. doi: 10.1161/CIRCULATIONAHA.117.028728. Epub 2017 Sep 25. Circulation. 2017. PMID: 28947430 Free PMC article.
-
SZC-6, a small-molecule activator of SIRT3, attenuates cardiac hypertrophy in mice.Acta Pharmacol Sin. 2023 Mar;44(3):546-560. doi: 10.1038/s41401-022-00966-8. Epub 2022 Aug 30. Acta Pharmacol Sin. 2023. PMID: 36042291 Free PMC article.
-
Reciprocal Regulation of AMPK/SNF1 and Protein Acetylation.Int J Mol Sci. 2018 Oct 25;19(11):3314. doi: 10.3390/ijms19113314. Int J Mol Sci. 2018. PMID: 30366365 Free PMC article. Review.
-
Roles of SIRT3 in heart failure: from bench to bedside.J Zhejiang Univ Sci B. 2016 Nov.;17(11):821-830. doi: 10.1631/jzus.B1600253. J Zhejiang Univ Sci B. 2016. PMID: 27819129 Free PMC article. Review.
Cited by
-
NAD+ Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death.Front Physiol. 2020 Aug 13;11:901. doi: 10.3389/fphys.2020.00901. eCollection 2020. Front Physiol. 2020. PMID: 32903597 Free PMC article. Review.
-
Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling.Am J Physiol Heart Circ Physiol. 2013 Feb 1;304(3):H415-26. doi: 10.1152/ajpheart.00468.2012. Epub 2012 Nov 30. Am J Physiol Heart Circ Physiol. 2013. PMID: 23203961 Free PMC article.
-
Exploring therapeutic potential of mitophagy modulators using Drosophila models of Parkinson's disease.Front Aging Neurosci. 2022 Oct 19;14:986849. doi: 10.3389/fnagi.2022.986849. eCollection 2022. Front Aging Neurosci. 2022. PMID: 36337696 Free PMC article. Review.
-
Mitochondria and Oxidative Stress in the Cardiorenal Metabolic Syndrome.Cardiorenal Med. 2012 May;2(2):87-109. doi: 10.1159/000335675. Epub 2012 Feb 7. Cardiorenal Med. 2012. PMID: 22619657 Free PMC article.
-
Emerging beneficial roles of sirtuins in heart failure.Basic Res Cardiol. 2012 Jul;107(4):273. doi: 10.1007/s00395-012-0273-5. Epub 2012 May 24. Basic Res Cardiol. 2012. PMID: 22622703 Free PMC article. Review.
References
-
- Frey N., Katus H. A., Olson E. N., Hill J. A. (2004) Circulation 109, 1580–1589 - PubMed
-
- Frey N., Olson E. N. (2003) Annu. Rev. Physiol. 65, 45–79 - PubMed
-
- Morisco C., Sadoshima J., Trimarco B., Arora R., Vatner D. E., Vatner S. F. (2003) Am. J. Physiol. Heart Circ. Physiol. 284, H1043–H1047 - PubMed
-
- Diwan A., Dorn G. W., 2nd (2007) Physiology 22, 56–64 - PubMed
-
- Sawyer D. B., Siwik D. A., Xiao L., Pimentel D. R., Singh K., Colucci W. S. (2002) J. Mol. Cell Cardiol. 34, 379–388 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous