Disulfide bond formation and cysteine exclusion in gram-positive bacteria
- PMID: 19940132
- PMCID: PMC2823432
- DOI: 10.1074/jbc.M109.081398
Disulfide bond formation and cysteine exclusion in gram-positive bacteria
Abstract
Most secretion pathways in bacteria and eukaryotic cells are challenged by the requirement for their substrate proteins to mature after they traverse a membrane barrier and enter a reactive oxidizing environment. For Gram-positive bacteria, the mechanisms that protect their exported proteins from misoxidation during their post-translocation maturation are poorly understood. To address this, we separated numerous bacterial species according to their tolerance for oxygen and divided their proteomes based on the predicted subcellular localization of their proteins. We then applied a previously established computational approach that utilizes cysteine incorporation patterns in proteins as an indicator of enzymatic systems that may exist in each species. The Sec-dependent exported proteins from aerobic Gram-positive Actinobacteria were found to encode cysteines in an even-biased pattern indicative of a functional disulfide bond formation system. In contrast, aerobic Gram-positive Firmicutes favor the exclusion of cysteines from both their cytoplasmic proteins and their substantially longer exported proteins. Supporting these findings, we show that Firmicutes, but not Actinobacteria, tolerate growth in reductant. We further demonstrate that the actinobacterium Corynebacterium glutamicum possesses disulfide-bonded proteins and two dimeric Dsb-like enzymes that can efficiently catalyze the formation of disulfide bonds. Our results suggest that cysteine exclusion is an important adaptive strategy against the challenges presented by oxidative environments.
Figures





Similar articles
-
Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis.J Biol Chem. 2004 Jan 30;279(5):3516-24. doi: 10.1074/jbc.M311833200. Epub 2003 Nov 3. J Biol Chem. 2004. PMID: 14597624
-
Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium Corynebacterium matruchotii.J Bacteriol. 2018 Apr 9;200(9):e00783-17. doi: 10.1128/JB.00783-17. Print 2018 May 1. J Bacteriol. 2018. PMID: 29440253 Free PMC article.
-
Disulfide-Bond-Forming Pathways in Gram-Positive Bacteria.J Bacteriol. 2015 Dec 7;198(5):746-54. doi: 10.1128/JB.00769-15. J Bacteriol. 2015. PMID: 26644434 Free PMC article. Review.
-
Aeropyrum pernix membrane topology of protein VKOR promotes protein disulfide bond formation in two subcellular compartments.Microbiology (Reading). 2017 Dec;163(12):1864-1879. doi: 10.1099/mic.0.000569. Epub 2017 Nov 15. Microbiology (Reading). 2017. PMID: 29139344 Free PMC article.
-
The Arsenic Detoxification System in Corynebacteria: Basis and Application for Bioremediation and Redox Control.Adv Appl Microbiol. 2017;99:103-137. doi: 10.1016/bs.aambs.2017.01.001. Epub 2017 Mar 6. Adv Appl Microbiol. 2017. PMID: 28438267 Review.
Cited by
-
Bifunctionality of a biofilm matrix protein controlled by redox state.Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6184-E6191. doi: 10.1073/pnas.1707687114. Epub 2017 Jul 11. Proc Natl Acad Sci U S A. 2017. PMID: 28698374 Free PMC article.
-
Repurposing Disulfiram as an Antimicrobial Agent in Topical Infections.Antibiotics (Basel). 2022 Dec 4;11(12):1752. doi: 10.3390/antibiotics11121752. Antibiotics (Basel). 2022. PMID: 36551409 Free PMC article.
-
The transcriptional response of Lactobacillus sanfranciscensis DSM 20451T and its tcyB mutant lacking a functional cystine transporter to diamide stress.Appl Environ Microbiol. 2014 Jul;80(14):4114-25. doi: 10.1128/AEM.00367-14. Epub 2014 May 2. Appl Environ Microbiol. 2014. PMID: 24795368 Free PMC article.
-
A thiol-disulfide oxidoreductase of the Gram-positive pathogen Corynebacterium diphtheriae is essential for viability, pilus assembly, toxin production and virulence.Mol Microbiol. 2015 Dec;98(6):1037-50. doi: 10.1111/mmi.13172. Epub 2015 Sep 25. Mol Microbiol. 2015. PMID: 26294390 Free PMC article.
-
Engineering of Helicobacter pylori Dimeric Oxidoreductase DsbK (HP0231).Front Microbiol. 2016 Jul 26;7:1158. doi: 10.3389/fmicb.2016.01158. eCollection 2016. Front Microbiol. 2016. PMID: 27507968 Free PMC article.
References
-
- Cross B. C., Sinning I., Luirink J., High S. (2009) Nat. Rev. Mol. Cell Biol. 10, 255–264 - PubMed
-
- Papanikou E., Karamanou S., Economou A. (2007) Nat. Rev. Microbiol. 5, 839–851 - PubMed
-
- Schnell D. J., Hebert D. N. (2003) Cell 112, 491–505 - PubMed
-
- Thanassi D. G., Hultgren S. J. (2000) Curr. Opin. Cell Biol. 12, 420–430 - PubMed
-
- Xie K., Dalbey R. E. (2008) Nat. Rev. Microbiol. 6, 234–244 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases