Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 15;186(2):179-85.
doi: 10.1016/j.jneumeth.2009.11.015. Epub 2009 Nov 24.

Correction of low-frequency physiological noise from the resting state BOLD fMRI--Effect on ICA default mode analysis at 1.5 T

Affiliations

Correction of low-frequency physiological noise from the resting state BOLD fMRI--Effect on ICA default mode analysis at 1.5 T

Tuomo Starck et al. J Neurosci Methods. .

Abstract

Confounding low-frequency fluctuation (LFF) physiological noise is a concern for functional connectivity analyses in blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). Using estimates of LFF physiological noise derived from measured cardiac and respiration signals, noise can be filtered from the time series thus improving the results of functional connectivity analysis. The ability of spatial independent component analysis (ICA) to separate LFF physiological noise from the default mode network (DMN), which overlap each other spatially and occur at similar frequencies, has remained an open question. We aimed to define the net effect of physiological correction for spatial ICA DMN detection at 1.5 T by statistically testing obtained ICASSO centrotype DMN maps before and after physiological correction. Comparisons with 21 subjects were performed for ICA model orders 20, 30 and 40 and no statistically significant spatial difference was found after physiological correction, although slight DMN reduction in precuneus or sagittal sinus was detected in all dimensionalities. A confounding factor in the analysis is the susceptibility of the ICA decomposition for data changes yielding different DMN splitting between and after physiological correction conditions without comparable true change in the data. This issue is mitigated at higher ICA model orders. The results suggest that subject-level DMN can for some subjects be optimized by physiological correction, but on the group-level this contribution is minor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources