Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157 : H7
- PMID: 19942657
- PMCID: PMC2889430
- DOI: 10.1099/mic.0.032631-0
Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157 : H7
Abstract
Alternative sigma factor 54 (RpoN) is an important regulator of stress resistance and virulence genes in many bacterial species. In this study, we report on the gene expression alterations that follow rpoN inactivation in Escherichia coli O157 : H7 strain Sakai (Sakai rpoN : : kan), and the influence of RpoN on the acid resistance phenotype. Microarray gene expression profiling revealed the differential expression of 103 genes in SakairpoN : : kan relative to Sakai. This included the growth-phase-dependent upregulation of genes required for glutamate-dependent acid resistance (GDAR) ( gadA, gadB, gadC and gadE), and the downregulation of locus of enterocyte effacement (LEE) genes, which encode a type III secretion system. Upregulation of gad genes in SakairpoN : : kan during exponential growth correlated with increased GDAR and survival in a model stomach system. Complementation of SakairpoN : : kan with a cloned version of rpoN restored acid susceptibility. Genes involved in GDAR regulation, including rpoS (sigma factor 38) and gadE (acid-responsive regulator), were shown to be required for the survival of SakairpoN : : kan by the GDAR mechanism. This study describes the contribution of rpoN to acid resistance and GDAR gene regulation, and reveals RpoN to be an important regulator of stress resistance and virulence genes in E. coli O157 : H7.
Figures


Similar articles
-
Sigma factor N, liaison to an ntrC and rpoS dependent regulatory pathway controlling acid resistance and the LEE in enterohemorrhagic Escherichia coli.PLoS One. 2012;7(9):e46288. doi: 10.1371/journal.pone.0046288. Epub 2012 Sep 27. PLoS One. 2012. PMID: 23029465 Free PMC article.
-
Characterization of the Escherichia coli O157:H7 Sakai GadE regulon.J Bacteriol. 2009 Mar;191(6):1868-77. doi: 10.1128/JB.01481-08. Epub 2008 Dec 29. J Bacteriol. 2009. PMID: 19114477 Free PMC article.
-
σ(N) -dependent control of acid resistance and the locus of enterocyte effacement in enterohemorrhagic Escherichia coli is activated by acetyl phosphate in a manner requiring flagellar regulator FlhDC and the σ(S) antagonist FliZ.Microbiologyopen. 2014 Aug;3(4):497-512. doi: 10.1002/mbo3.183. Epub 2014 Jun 16. Microbiologyopen. 2014. PMID: 24931910 Free PMC article.
-
Quorum sensing and expression of virulence in Escherichia coli O157:H7.Int J Food Microbiol. 2003 Aug 15;85(1-2):1-9. doi: 10.1016/s0168-1605(02)00482-8. Int J Food Microbiol. 2003. PMID: 12810266 Review.
-
Regulation of Escherichia coli Pathogenesis by Alternative Sigma Factor N.EcoSal Plus. 2017 Jun;7(2):10.1128/ecosalplus.ESP-0016-2016. doi: 10.1128/ecosalplus.ESP-0016-2016. EcoSal Plus. 2017. PMID: 28635589 Free PMC article. Review.
Cited by
-
Enhanced Promoter Activity by Replenishment of Sigma Factor rpoE in Klebsiella pneumoniae.Indian J Microbiol. 2016 Jun;56(2):190-7. doi: 10.1007/s12088-016-0576-6. Epub 2016 Mar 30. Indian J Microbiol. 2016. PMID: 27570311 Free PMC article.
-
A Role for the RNA Polymerase Gene Specificity Factor σ54 in the Uniform Colony Growth of Uropathogenic Escherichia coli.J Bacteriol. 2022 Apr 19;204(4):e0003122. doi: 10.1128/jb.00031-22. Epub 2022 Mar 31. J Bacteriol. 2022. PMID: 35357162 Free PMC article.
-
Shiga toxin 2 overexpression in Escherichia coli O157:H7 strains associated with severe human disease.Microb Pathog. 2011 Dec;51(6):466-70. doi: 10.1016/j.micpath.2011.07.009. Epub 2011 Aug 16. Microb Pathog. 2011. PMID: 21864671 Free PMC article.
-
Sigma factor N, liaison to an ntrC and rpoS dependent regulatory pathway controlling acid resistance and the LEE in enterohemorrhagic Escherichia coli.PLoS One. 2012;7(9):e46288. doi: 10.1371/journal.pone.0046288. Epub 2012 Sep 27. PLoS One. 2012. PMID: 23029465 Free PMC article.
-
Coordinated regulation of acid resistance in Escherichia coli.BMC Syst Biol. 2017 Jan 6;11(1):1. doi: 10.1186/s12918-016-0376-y. BMC Syst Biol. 2017. PMID: 28061857 Free PMC article.
References
-
- Bergholz, T. M. & Whittam, T. S. (2007). Variation in acid resistance among enterohaemorrhagic Escherichia coli in a simulated gastric environment. J Appl Microbiol 102, 352–362. - PubMed
-
- Bergholz, T. M., Tarr, C. L., Christensen, L. M., Betting, D. J. & Whittam, T. S. (2007a). Recent gene conversions between duplicated glutamate decarboxylase genes (gadA and gadB) in pathogenic Escherichia coli. Mol Biol Evol 24, 2323–2333. - PubMed
-
- Bishop, R. E., Leskiw, B. K., Hodges, R. S., Kay, C. M. & Weiner, J. H. (1998). The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. J Mol Biol 280, 583–596. - PubMed
-
- Bittner, M., Saldias, S., Estevez, C., Zaldivar, M., Marolda, C. L., Valvano, M. A. & Contreras, I. (2002). O-antigen expression in Salmonella enterica serovar Typhi is regulated by nitrogen availability through RpoN-mediated transcriptional control of the rfaH gene. Microbiology 148, 3789–3799. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases