Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jan;147(1):27-33.
doi: 10.1093/jb/mvp196. Epub 2009 Nov 26.

Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals

Affiliations
Review

Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals

Kenji Kohno. J Biochem. 2010 Jan.

Abstract

The unfolded protein response is an adaptive stress response that responds to the imbalance between the entry of newly synthesized unfolded proteins and the inherent folding capacity in the endoplasmic reticulum (ER). Various environmental stresses and changes in physiological conditions can result in the accumulation of unfolded proteins in the ER, which is sensed through ER transmembrane protein sensors named inositol requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6), and the sensed signals are transduced to the cytosol and the nucleus. IRE1 is a prototype ER stress sensor that is evolutionarily conserved from yeast to humans. Higher eukaryotes have evolved two other sensors, PERK and ATF6. This review focuses on the current progress in our understanding of stress-sensing mechanisms, in particular, the similarities and differences between yeast and mammals.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources