Diabetes and microvascular pathophysiology: role of epidermal growth factor receptor tyrosine kinase
- PMID: 19943320
- PMCID: PMC2823570
- DOI: 10.1002/dmrr.1050
Diabetes and microvascular pathophysiology: role of epidermal growth factor receptor tyrosine kinase
Abstract
Type 2 diabetes is responsible for the increased prevalence of ischaemic heart disease, generally related to coronary artery disease, which is associated with increased morbidity and death in diabetic patients. Epidermal growth factor receptor (EGFR) tyrosine kinase, one of the many factors involved in cell growth and migration, has been shown to be key element in the development of microvessel myogenic tone. In a recent study, we have shown that microvascular dysfunction in type 2 diabetes is dependent on the exacerbation of the EGFR tyrosine kinase phosphorylation. Thus, further elucidation of this EGFR transactivation and down stream signalling will offer a new direction to investigate the mechanism of microvascular dysfunction responsible for heart disease that occurs in type 2 diabetes. In this review, we discuss the link between the EGFR transactivation and microvascular dysfunction that occurs in type 2 diabetes.
Copyright (c) 2009 John Wiley & Sons, Ltd.
References
-
- Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001 Sep;44(Suppl 2):S14–21. - PubMed
-
- Mahmud A, Feely J. Arterial stiffness and the renin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst. 2004 Sep;5(3):102–108. - PubMed
-
- Zhai P, Galeotti J, Liu J, Holle E, Yu X, Wagner T, Sadoshima J. An angiotensin II type 1 receptor mutant lacking epidermal growth factor receptor transactivation does not induce angiotensin II-mediated cardiac hypertrophy. Circ Res. 2006 Sep 1;99(5):528–536. - PubMed
-
- Lucchesi PA, Sabri A, Belmadani S, Matrougui K. Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries. Circulation. 2004 Dec 7;110(23):3587–3593. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
