Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects
- PMID: 19944400
- PMCID: PMC2795801
- DOI: 10.1016/j.ajhg.2009.10.018
Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects
Abstract
Genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility in primary ciliary dyskinesia (PCD). The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Here, we demonstrate that large genomic deletions, as well as point mutations involving LRRC50, are responsible for a distinct PCD variant that is characterized by a combined defect involving assembly of the ODAs and IDAs. Functional analyses showed that LRRC50 deficiency disrupts assembly of distally and proximally DNAH5- and DNAI2-containing ODA complexes, as well as DNALI1-containing IDA complexes, resulting in immotile cilia. On the basis of these findings, we assume that LRRC50 plays a role in assembly of distinct dynein-arm complexes.
Figures




References
-
- Fliegauf M., Benzing T., Omran H. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 2007;8:880–893. - PubMed
-
- Nonaka S., Tanaka Y., Okada Y., Takeda S., Harada A., Kanai Y., Kido M., Hirokawa N. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 1998;95:829–837. - PubMed
-
- Ibanez-Tallon I., Pagenstecher A., Fliegauf M., Olbrich H., Kispert A., Ketelsen U.P., North A., Heintz N., Omran H. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum. Mol. Genet. 2004;13:2133–2141. - PubMed
-
- Olbrich H., Häffner K., Kispert A., Völkel A., Volz A., Sasmaz G., Reinhardt R., Hennig S., Lehrach H., Konietzko N. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 2002;30:143–144. - PubMed
-
- Schwabe G.C., Hoffmann K., Loges N.T., Birker D., Rossier C., de Santi M.M., Olbrich H., Fliegauf M., Failly M., Liebers U. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum. Mutat. 2008;29:289–298. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases