Control of catalysis in flavin-dependent monooxygenases
- PMID: 19944667
- DOI: 10.1016/j.abb.2009.11.028
Control of catalysis in flavin-dependent monooxygenases
Abstract
Flavoprotein monooxygenases reduce flavins, speed their reaction with oxygen, and stabilize a C4a-oxygen adduct long enough to use this reactive species to transfer an oxygen atom to a substrate. The flavin-oxygen adduct can be the C4a-peroxide anion, in which case it reacts as a nucleophile. The protonated adduct - the C4a-hydroperoxide - reacts as an electrophile. The elimination of H(2)O(2) competes with substrate oxygenation. This side-reaction is suppressed, preventing the waste of NAD(P)H and the production of toxic H(2)O(2). Several strategies have been uncovered that prevent the deleterious side-reaction while still allowing substrate hydroxylation.
Copyright 2009 Elsevier Inc. All rights reserved.
Similar articles
-
Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.Biochem Biophys Res Commun. 2005 Dec 9;338(1):590-8. doi: 10.1016/j.bbrc.2005.09.081. Epub 2005 Sep 26. Biochem Biophys Res Commun. 2005. PMID: 16236251 Review.
-
Flavin dependent monooxygenases.Arch Biochem Biophys. 2014 Feb 15;544:2-17. doi: 10.1016/j.abb.2013.12.005. Epub 2013 Dec 17. Arch Biochem Biophys. 2014. PMID: 24361254 Review.
-
Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases.Biochemistry. 2012 Sep 11;51(36):7043-5. doi: 10.1021/bi301072w. Epub 2012 Aug 30. Biochemistry. 2012. PMID: 22928747
-
C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.Biochemistry. 2013 Dec 23;52(51):9089-91. doi: 10.1021/bi4014903. Epub 2013 Dec 12. Biochemistry. 2013. PMID: 24321106
-
Role of the somersault rearrangement in the oxidation step for flavin monooxygenases (FMO). A comparison between FMO and conventional xenobiotic oxidation with hydroperoxides.J Phys Chem A. 2011 Oct 13;115(40):11087-100. doi: 10.1021/jp208087u. Epub 2011 Sep 20. J Phys Chem A. 2011. PMID: 21888352
Cited by
-
Structure and mechanism of ORF36, an amino sugar oxidizing enzyme in everninomicin biosynthesis.Biochemistry. 2010 Nov 2;49(43):9306-17. doi: 10.1021/bi101336u. Biochemistry. 2010. PMID: 20866105 Free PMC article.
-
Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides.Nat Commun. 2021 Mar 4;12(1):1431. doi: 10.1038/s41467-021-21432-9. Nat Commun. 2021. PMID: 33664266 Free PMC article.
-
pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.J Biol Chem. 2011 Jan 7;286(1):223-33. doi: 10.1074/jbc.M110.163881. Epub 2010 Oct 28. J Biol Chem. 2011. PMID: 21030590 Free PMC article.
-
Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development.ChemMedChem. 2022 Jun 20;17(12):e202200115. doi: 10.1002/cmdc.202200115. Epub 2022 May 2. ChemMedChem. 2022. PMID: 35385205 Free PMC article. Review.
-
The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease.J Mol Med (Berl). 2013 Jun;91(6):705-13. doi: 10.1007/s00109-013-1046-9. Epub 2013 May 1. J Mol Med (Berl). 2013. PMID: 23636512 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous