Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology
- PMID: 19946878
- PMCID: PMC3160784
- DOI: 10.1002/biot.200900234
Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology
Abstract
Driven by advancements in high-throughput biological technologies and the growing number of sequenced genomes, the construction of in silico models at the genome scale has provided powerful tools to investigate a vast array of biological systems and applications. Here, we review comprehensively the uses of such models in industrial and medical biotechnology, including biofuel generation, food production, and drug development. While the use of in silico models is still in its early stages for delivering to industry, significant initial successes have been achieved. For the cases presented here, genome-scale models predict engineering strategies to enhance properties of interest in an organism or to inhibit harmful mechanisms of pathogens. Going forward, genome-scale in silico models promise to extend their application and analysis scope to become a trans-formative tool in biotechnology.
Figures





Similar articles
-
[Systems biology for industrial biotechnology].Sheng Wu Gong Cheng Xue Bao. 2019 Oct 25;35(10):1955-1973. doi: 10.13345/j.cjb.190217. Sheng Wu Gong Cheng Xue Bao. 2019. PMID: 31668041 Review. Chinese.
-
Industrial biotechnology: tools and applications.Biotechnol J. 2009 Dec;4(12):1725-39. doi: 10.1002/biot.200900127. Biotechnol J. 2009. PMID: 19844915 Review.
-
Aspergilli: systems biology and industrial applications.Biotechnol J. 2012 Sep;7(9):1147-55. doi: 10.1002/biot.201200169. Epub 2012 Aug 14. Biotechnol J. 2012. PMID: 22890866 Review.
-
Use of genome-scale metabolic models for understanding microbial physiology.FEBS Lett. 2010 Jun 18;584(12):2556-64. doi: 10.1016/j.febslet.2010.04.052. Epub 2010 Apr 24. FEBS Lett. 2010. PMID: 20420838 Review.
-
Current state of genome-scale modeling in filamentous fungi.Biotechnol Lett. 2015 Jun;37(6):1131-9. doi: 10.1007/s10529-015-1782-8. Epub 2015 Feb 21. Biotechnol Lett. 2015. PMID: 25700817 Free PMC article. Review.
Cited by
-
Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae.Metab Eng Commun. 2016 May 13;3:153-163. doi: 10.1016/j.meteno.2016.05.002. eCollection 2016 Dec. Metab Eng Commun. 2016. PMID: 29468121 Free PMC article.
-
Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.PLoS One. 2011;6(11):e27316. doi: 10.1371/journal.pone.0027316. Epub 2011 Nov 4. PLoS One. 2011. PMID: 22076150 Free PMC article.
-
An atlas of human metabolism.Sci Signal. 2020 Mar 24;13(624):eaaz1482. doi: 10.1126/scisignal.aaz1482. Sci Signal. 2020. PMID: 32209698 Free PMC article.
-
Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction.PLoS Comput Biol. 2015 Nov 13;11(11):e1004530. doi: 10.1371/journal.pcbi.1004530. eCollection 2015 Nov. PLoS Comput Biol. 2015. PMID: 26566239 Free PMC article.
-
FASIMU: flexible software for flux-balance computation series in large metabolic networks.BMC Bioinformatics. 2011 Jan 22;12:28. doi: 10.1186/1471-2105-12-28. BMC Bioinformatics. 2011. PMID: 21255455 Free PMC article.
References
-
- Schilling CH, Palsson BO. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol. 2000;203:249–283. - PubMed
-
- Covert MW, Schilling CH, Palsson B. Regulation of gene expression in flux balance models of metabolism. J Theor Biol. 2001;213:73–88. - PubMed
-
- Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004;429:92–96. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources