Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 4;16(1):227-32.
doi: 10.1002/chem.200902650.

A facile circular dichroism protocol for rapid determination of enantiomeric excess and concentration of chiral primary amines

Affiliations

A facile circular dichroism protocol for rapid determination of enantiomeric excess and concentration of chiral primary amines

Sonia Nieto et al. Chemistry. .

Abstract

A protocol for the rapid determination of the absolute configuration and enantiomeric excess (ee) of alpha-chiral primary amines with potential applications in asymmetric reaction discovery has been developed. The protocol requires derivatization of alpha-chiral primary amines through condensation with pyridine carboxaldehyde to quantitatively yield the corresponding imine. The Cu(I) complex with 2,2'-bis (diphenylphosphino)-1,1'-dinaphthyl (BINAP--Cu(I)) with the imine yields a metal-to-ligand charge-transfer (MLCT) band in the visible region of the circular dichroism (CD) spectrum upon binding. Diastereomeric host-guest complexes give CD signals of the same signs but different amplitudes, allowing for differentiation of enantiomers. Processing the primary optical data from the CD spectrum with linear discriminant analysis (LDA) allows for the determination of the absolute configuration and identification of the amines, and processing with a supervised multilayer perceptron artificial neural network (MLP-ANN) allows for the simultaneous determination of the ee and concentration. The primary optical data necessary to determine the ee of unknown samples is obtained in two minutes per sample. To demonstrate the utility of the protocol in asymmetric reaction discovery, the ee values and concentrations for an asymmetric metal-catalyzed reaction are determined. The potential of the application of this protocol in high-throughput screening (HTS) of ee is discussed.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(a) (R)- and (S)-1 complexes employed as receptors; (b) Chiral primary amines employed as analytes: a-methyl-benzylamine (MBA), 1-cyclohexyl-ethylamine (CEA), 2-aminoheptane (AHP).
Figure 2
Figure 2
(a) CD spectrum for (R)-1 [0.4 mM] and the enantiomers of CPI [0.8 mM]; (b) Titration of (R)-1 [0.4 mM] with (R)- and (S)-CPI in acetonitrile at 354 nm.
Figure 3
Figure 3
LDA plot of receptor (R)-1 [0.4 mM] with all the analytes [0.8 mM].
Figure 4
Figure 4
Two-dimensional PCA plot of CPI with three ee trainings sets at three different [G]t values: 0.2 mM, 0.8 mM and 1.4 mM.
Scheme 1
Scheme 1
Derivatization of the amines to form the corresponding Schiff bases.
Scheme 2
Scheme 2
Asymmetric reaction used to synthesize a sample of MBA of unknown ee.

Similar articles

Cited by

References

    1. Reetz MT. Angew. Chem. 2001;113:292–320. Angew. Chem. Int. Ed. 2001, 40, 284–310.
    1. Wahler D, Reymond J-L. Curr. Opin. Biotechnol. 2001;12:535–544. - PubMed
    2. Stambuli JP, Hartwig JF. Curr. Opin. Chem. Biol. 2003;7:420–426. - PubMed
    3. Gennari C, Piarulli U. Chem. Rev. 2003;103:3071–3100. - PubMed
    1. Welch CJ, Szczerba T, Perrin SR. J. Chromatogr. A. 1997;758:93–98.
    2. Welch CJ, Grau B, Moore J, Mathre DJ. J. Org. Chem. 2001;66:6836–6837. - PubMed
    3. Welch CJ, Fleitz F, Antia F, Yehl P, Waters R, Ikemoto N, Armstrong IJD, Mathre D. J. Org. Process Res. Dev. 2004;8:186–191.
    4. Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998;120:4901–4902.
    5. Wolf PAC, Hawes J. Org. Chem. 2002;67:2727–2729. - PubMed
    6. Traverse JF, Snapper ML. Drug Discovery Today. 2002;7:1002–1012. - PubMed
    7. Kuntz KW, Snapper ML, Hoveyda AH. Curr. Opin. Chem. Biol. 1999;3:313–319. - PubMed
    1. For recently representative examples see: Bailey D M, Hennig A, Uzunova V D, Nau W M. Chem. Eur. J. 2008;14:6069–6077.. Truppo M D, Escalettes F, Turner N J. Angew. Chem. 2008;120:2679–2681. Angew. Chem. Int. Ed. 2008, 47, 2639–2641.. Chen Z-H, He Y-B, Hu C-G, Huang X-H, Hu L. Aust. J.Chem. 2008;61:310–315.. Ingle J R, Busch K W, Kenneth W, Busch M A. Talanta. 2008;75:572–584.. Tanaka H, Matilde S. Chirality. 2008;20:307–312.. Yashima E, Katsuhiro M. Macromolecules. 2008;41:3–12.. Young B L, Cooks R G. Int. J. Mass Spectrom. 2007;267:199–204.. Li Z-B, Lin J, Sabat M, Hyacinth M, Pu L. J. Org, Chem. 2007;72:4905–4916.. Hoogenraad M, Klaus G M, Elders N, Hooijschuur S M, McKay B, Smith A A, Damen EW P. Tetrahedron:Asymmetry. 2004;15:519–523.. van der Linden J B, Ras E-J, Hooijschuur S M, Klaus G M, Luchters N T, Dani P, Verspui G, Smith A A, Damen EW P, McKay B, Hoogenraad M. QSAR Comb. Sci. 2005;24:94–98.. Mazurek S, Ward T R, Novic M. Mol. Divers. 2007;11:141–152.

    1. See for example: Lin J, Zhang H C, Pu L. Org. Lett. 2002;4:3297–3300.. Lee S J, Lin W. J. Am. Chem. Soc. 2002;124:4554–4555.. Ahn K H, Ku H-Y, Kim Y, Kim S-G, Kim Y K, Son H S, Ku J K. Org. Lett. 2003;5:1419–1422.. Pu L. Chem. Rev. 2004;104:1687–1716.. Corradini R, Paganuzzi C, Marchelli R, Pagliari S, Sforza S, Dossena A, Galaverna G, Duchateau A. J. Mater. Chem. 2005;15:2741–2746.. Li Z-B, Lin J, Pu L. Angew. Chem. 2005;117:1718–1721. Angew. Chem. Int. Ed. 2005, 44, 1690–1693.. Zhao J, James T D. J. Mater. Chem. 2005;15:2896–2901.. Mei X, Wolf C. Tetrahedron Lett. 2006;47:7901–7904.. Wolf C, Liu S, Reinhardt B C. Chem. Commun. 2006;47:4242–4244.. Liu S, Pestano J P C, Wolf C. J. Org. Chem. 2008;73:4267–4270.

Publication types

LinkOut - more resources