The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration
- PMID: 19955366
- PMCID: PMC6665958
- DOI: 10.1523/JNEUROSCI.4259-09.2009
The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration
Abstract
Several mutations in the N terminus of the G-protein-coupled receptor rhodopsin disrupt NXS/T consensus sequences for N-linked glycosylation (located at N2 and N15) and cause sector retinitis pigmentosa in which the inferior retina preferentially degenerates. Here we examined the role of rhodopsin glycosylation in biosynthesis, trafficking, and retinal degeneration (RD) using transgenic Xenopus laevis expressing glycosylation-defective human rhodopsin mutants. Although mutations T4K and T4N caused RD, N2S and T4V did not, demonstrating that glycosylation at N2 was not required for photoreceptor viability. In contrast, similar mutations eliminating glycosylation at N15 (N15S and T17M) caused rod death. Expression of T17M was more toxic than T4K to transgenic photoreceptors, further suggesting that glycosylation at N15 plays a more important physiological role than glycosylation at N2. Together, these results indicate that the structure of the rhodopsin N terminus must be maintained by an appropriate amino acid sequence surrounding N2 and may require a carbohydrate moiety at N15. The mutant rhodopsins were rendered less toxic in their dark inactive states, because RD was abolished or significantly reduced when transgenic tadpoles expressing T4K, T17M, and N2S/N15S were protected from light exposure. Regardless of their effect on rod viability, all of the mutants primarily localized to the outer segment and Golgi and showed little or no endoplasmic reticulum accumulation. Thus, glycosylation was not crucial for rhodopsin biosynthesis or trafficking. Interestingly, expression of similar bovine rhodopsin mutants did not cause rod cell death, possibly attributable to greater stability of bovine rhodopsin.
Figures
References
-
- Adamus G, Zam ZS, Arendt A, Palczewski K, McDowell JH, Hargrave PA. Anti-rhodopsin monoclonal antibodies of defined specificity: characterization and application. Vision Res. 1991;31:17–31. - PubMed
-
- Bourne HR, Meng EC. Structure. Rhodopsin sees the light. Science. 2000;289:733–734. - PubMed
-
- Cohen GB, Yang T, Robinson PR, Oprian DD. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry. 1993;32:6111–6115. - PubMed
-
- Conover WJ. Practical nonparametric statistics. Ed 3. New York: Wiley; 1999.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous