Leptin-signaling pathways and leptin resistance
- PMID: 19955780
- PMCID: PMC11129273
- DOI: 10.1159/000264400
Leptin-signaling pathways and leptin resistance
Abstract
Leptin acts as an anorexigenic hormone in the brain, where the long form of the leptin receptor (LRb) is widely expressed in hypothalamic and extra-hypothalamic sites that are known to participate in diverse feeding circuits. The important role of leptin in energy homeostasis is demonstrated by the profound hyperphagia and morbid obesity in humans and rodents null for leptin or LRb. However, common forms of obesity are associated with high leptin levels and a failure to respond effectively to exogenous leptin; indicating a state of leptin resistance. Leptin resistance is thought to be an important component in the development of obesity. Several defects may contribute to the leptin resistant state, including a defective leptin transport across the blood-brain barrier, which reduces the availability of leptin at its receptor. Furthermore, defects in LRb signal transduction involving reduced LRb expression or the induction of feedback inhibitors have been found in leptin resistance; these defects are commonly termed cellular leptin resistance,. Finally, reduced leptin action can result in the disruption of proper neuronal interactions, by altering neuronal wiring. Interestingly, some leptin functions remain intact in the leptin-resistant state, such as cardiovascular leptin effects. The appearance of selective leptin resistance is mirrored by the observation that cellular leptin resistance has been found only in some subpopulations of hypothalamic LRb neurons. Current efforts to dissect leptin function in specific populations of LRb neurons will increase our understanding of these complexities of leptin physiology.
Copyright (c) 2010 S. Karger AG, Basel.
Figures
References
-
- Chua SC Jr, Koutras IK, Han L, Liu SM, Kay J, Young SJ, Chung WK, Leibel RL: Fine structure of the murine leptin receptor gene: splice site suppression is required to form two alternatively spliced transcripts. Genomics 1997;45:264–270. - PubMed
-
- Tartaglia LA: The leptin receptor. J Biol Chem 1997;272:6093–6096. - PubMed
-
- Kowalski TJ, Liu SM, Leibel RL, Chua SC Jr: Transgenic complementation of leptin-receptor deficiency. I. Rescue of the obesity/diabetes phenotype of LEPR-null mice expressing a LEPR-B transgene. Diabetes 2001;50:425–435. - PubMed
-
- Langhans W, Geary N: Overview of the physiological control of eating; in Langhans W, Geary N (eds): Frontiers in Eating and Weight Regulation. Forum Nutr. Basel, Karger, 2010, vol 63, pp 9–53. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
