Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 1;4(12):e8103.
doi: 10.1371/journal.pone.0008103.

Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice

Affiliations

Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice

Ayce Yesilaltay et al. PLoS One. .

Abstract

Background: PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor, scavenger receptor class B type I (SR-BI), and regulates its expression, localization and function in a tissue-specific manner. PDZK1 knockout (KO) mice are characterized by a marked reduction of SR-BI protein expression ( approximately 95%) in the liver (lesser or no reduction in other organs) with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be atheroprotective using the high fat/high cholesterol ('Western') diet-fed murine apolipoprotein E (apoE) KO model of atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI.

Principal findings: Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic 'Paigen' diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO) mice showed increased plasma lipids (33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids) and a 26% increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease: 375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal fibrosis was noted), were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle.

Conclusions: These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Immunoblot analysis of hepatic SR-BI expression.
Mice with the indicated genotypes were fed a high fat/high cholesterol/cholate-containing “Paigen” diet for three months. Livers were harvested and subjected to immunoblotting using anti-SR-BI and anti-actin (loading control) antibodies as described in Materials and Methods.
Figure 2
Figure 2. Lipoprotein cholesterol profiles from apoE KO and PDZK1/apoE dKO mice.
Plasma harvested from individual mice fed a Paigen diet for three months was size fractionated using FPLC, and the total cholesterol contents of the fractions (mg/dL plasma) were determined by enzymatic assay. Profiles averaged from 2 independent experiments for each genotype, each composed of pooled plasma from six apoE KO (open circles) and six PDZK1/apoE dKO (filled circles) mice per experiment are shown. Approximate elution positions of human VLDL, IDL/LDL and HDL are indicated.
Figure 3
Figure 3. Aortic root atherosclerosis in Paigen diet-fed apoE KO and PDZK1/apoE dKO mice.
Hearts were harvested from Paigen diet-fed apoE KO (A, C–D) and PDZK1/apoE dKO (B, E–F) mice as described in Methods (n = 8 per genotype). Left top panels: A–B: representative cross-sections of Oil red O-stained aortic root lesions. (magnification, ×20). Right top panel: quantification of aortic root atherosclerosis by planimetry. Unpaired Student's t-test was used to determine statistical significance. Bottom panels: immunohistochemistry of aortic root atherosclerotic plaques using CD68 (C and E) or alpha-smooth muscle actin α-SMA) (D and F) antibodies show that macrophages compose the overwhelming cell population of aortic root atherosclerotic plaques and that smooth muscle cells are rare in both apoE KO (C–D) and PDZK1/apoE dKO (E–F) mice. “L” indicates the vascular lumen, arrows indicate representative positive cells (magnification, ×100).
Figure 4
Figure 4. Effects of loss of PDZK1 on coronary atherosclerosis and cardiac fibrosis in apoE KO mice.
Hearts were harvested from Paigen diet-fed mice as described in Methods (n = 8 per genotype). Left panels: A–B: representative cross-sections of Oil red O-stained (A–B) or trichrome-stained (C) myocardial coronary arterioles, showing unremarkable arterioles in apoE KO (A) and totally occluded arterioles in PDZK1/apoE dKO (B–C) mice (magnification, ×100). The Oil red O stain shows that the coronary arteriole is occluded almost exclusively by lipid-rich lesions (B), while the trichrome stain shows that the arteriole is surrounded by fibrosis in an area of myocardial infarction in a PDZK1/apoE dKO mouse (C). D–E: trichrome stained sections of hearts showing areas of infarction/fibrosis stained blue in PDZK1/apoE dKO (E), while they are absent in apoE KO (D) mice (magnification, ×10). Right top panel: quantification of coronary artery occlusions in apoE KO and PDZK1/apoE dKO mice. Statistically significant differences by ANOVA Tukey posthoc test comparing the two genotypes within a given group are indicated as: P<0.001. Right bottom panel: quantification of cardiac fibrosis in apoE KO and PDZK1/apoE dKO mice. Unpaired Student's t-test was used to determine statistical significance.

Similar articles

Cited by

References

    1. Kumar V, Abbas A, Fausto N. Elsevier and Saunders; 2005. Robbin's and Cotran pathologic basis of disease. pp. 516–525.
    1. Chase A, Jackson C, Angelini G, Suleiman M. Coronary artery disease progression is associated with increased resistance of hearts and myocytes to cardiac insults. Crit Care Med. 2007;35:2344–2351. - PubMed
    1. Zhang S, Reddick R, Piedrahita J, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–471. - PubMed
    1. Nakashima Y, Plump A, Raines E, Breslow J, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994;14:133–140. - PubMed
    1. Plump A, Smith J, Hayek T, Aalto-Setala K, Walsh A, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71:343–353. - PubMed

Publication types

MeSH terms