Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Apr 15;44(8):2809-15.
doi: 10.1021/es902325t.

Polychlorinated biphenyl sorption and availability in field-contaminated sediments

Affiliations
Free PMC article
Review

Polychlorinated biphenyl sorption and availability in field-contaminated sediments

David Werner et al. Environ Sci Technol. .
Free PMC article

Abstract

Traditional and new relationships of polychlorinated biphenyl (PCB) distribution among the solid phases, the free aqueous phase, and biolipids are comprehensively reviewed using seven well-characterized freshwater and marine sediments polluted with PCBs. The traditional relationship relating free aqueous concentration and biolipid concentration to sediment total organic carbon, compound octanol-water partitioning coefficient, and solid-phase contaminant concentration overestimates measured free aqueous concentrations and biolipid concentrations by mean factors of 8 and 33, respectively. By contrast, relationships based on measured free aqueous phase concentrations or the PCB mass fraction desorbed from sediment provide reasonable predictions of biolipid concentrations. Solid-phase concentration-based predictions perform better when sorption to amorphous organic matter and black carbon (BC) is distinguished. Contrary to previously published relationships, BC sorption appears to be linear for free aqueous PCB-congener concentrations in the picogram to microgram per liter range.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparison of measured aqueous PCB concentrations with those (a) estimated from KOW values, the sediment fOC and solid phase concentrations according to eq 1, and (b) estimated from solid phase concentrations, the sediment fOC and fBC and KOW values according to eqs 5 and 6. Data represent Hunters Point sediment (⧫), Lake Hartwell sediment (○), Grasse River sediment (◻), Crab Orchard Lake sediment (•), Milwaukee River location 1 sediment (Δ), Milwaukee River location 2 sediment (×), and Niagara River sediment (+). The line is drawn to show a 1:1 relationship between estimated and measured data.
Figure 2
Figure 2
Comparison of measured biolipid PCB concentrations with those estimated from (a) KOW values, the sediment fOC, and solid phase concentrations according to eq 3; (b) solid phase concentrations, the sediment fOC, and fBC and KOW values according to equations (5 − 7); (c) the contaminant mass fraction desorbed from sediment using a tenax extraction according to eq 4; and (d) actual measured free aqueous concentrations according to eq 2. Data represent Hunters Point sediment, Neanthes arenaceodentata (⧫) and Leptocheirus plumulosus (◊); Grasse River sediment, Lumbriculus variegatus (◻); Crab Orchard Lake sediment, Lumbriculus variegatus (•); Milwaukee River location 1 sediment, Lumbriculus variegatus (Δ); Milwaukee River location 2 sediment, Lumbriculus variegatus (×); and Niagara River sediment, Lumbriculus variegatus (+). The line is drawn to show a 1:1 relationship between estimated and measured data.
Figure 3
Figure 3
(a) Comparison of measured aqueous PCB concentrations with those estimated from solid phase concentrations, the sediment fOC and fBC and KOW values according to eqs 5 and 9, using KBC,lin and n = 1 instead of Kfr,BC and n = 0.7, and (10). Data represent Hunters Point sediment (⧫), Grasse River sediment (◻), Milwaukee River location 1 sediment (Δ), Milwaukee River location 2 sediment (×) and Niagara River sediment (+). (b) comparison of measured biolipid PCB concentrations with those estimated from solid phase concentrations, the sediment fOC and fBC and KOW values according to eq 5, 9, using KBC,lin and n = 1 instead of Kfr,BC and n = 0.7, and (10). Equation 2 was used to estimate biolipid concentrations from estimated aqueous concentrations in Figure 3a. Data represent Hunters Point sediment, Neanthes arenaceodentata (⧫) and Leptocheirus plumulosus (◊); Grasse River sediment, Lumbriculus variegatus (◻); Milwaukee River location 1 sediment, Lumbriculus variegatus (Δ); Milwaukee River location 2 sediment, Lumbriculus variegatus (×); and Niagara River sediment, Lumbriculus variegatus (+). The line is drawn to show a 1:1 relationship between estimated and measured data.

References

    1. Kraaij R.; Seinen W.; Tolls J. Direct evidence of sequestration in sediments affecting the bioavailability of hydrophobic organic chemicals to benthic deposit-feeders. Environ. Sci. Technol. 2002, 36, 3525–3529. - PubMed
    1. Zimmerman J. R.; Ghosh U.; Millward R. N.; Bridges T. S.; Luthy R. G. Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: Physicochemical tests. Environ. Sci. Technol. 2004, 38, 5458–5464. - PubMed
    1. Lohmann R.; MacFarlane J. K.; Gschwend P. M. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York, Harbor sediments. Environ. Sci. Technol. 2005, 39, 141–148. - PubMed
    1. Cornelissen G.; Gustafsson O.; Bucheli T. D.; Jonker M. T. O.; Koelmans A. A.; Van Noort P. C. M. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 2005, 39, 6881–6895. - PubMed
    1. Koelmans A. A.; Jonker M. T. O.; Cornelissen G.; Bucheli T. D.; Van Noort P. C. M.; Gustafsson O. Black carbon: The reverse of its dark side. Chemosphere 2006, 63, 365–377. - PubMed

Publication types

MeSH terms

Substances