Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 17;165(4):1377-89.
doi: 10.1016/j.neuroscience.2009.11.054. Epub 2009 Dec 1.

Endocannabinoids contribute to metabotropic glutamate receptor-mediated inhibition of GABA release onto hippocampal CA3 pyramidal neurons in an isolated neuron/bouton preparation

Affiliations

Endocannabinoids contribute to metabotropic glutamate receptor-mediated inhibition of GABA release onto hippocampal CA3 pyramidal neurons in an isolated neuron/bouton preparation

H Inada et al. Neuroscience. .

Abstract

Retrograde synaptic signaling by endogenous cannabinoids (endocannabinoids) is a recently discovered form of neuromodulation in various brain regions. In hippocampus, it is well known that endocannabinoids suppress presynaptic inhibitory neurotransmitter release in CA1 region. However, endocannabinoid signaling in CA3 region remains to be examined. Here we investigated whether presynaptic inhibition can be caused by activation of postsynaptic group I metabotropic glutamate receptors (mGluRs) and following presynaptic cannabinoid receptor type 1 (CB1 receptor) using mechanically dissociated rat hippocampal CA3 pyramidal neurons with adherent functional synaptic boutons. Application of group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) reversibly suppressed spontaneous inhibitory postsynaptic currents (IPSCs). In the presence of tetrodotoxin (TTX), frequency of miniature IPSCs was significantly reduced by DHPG, while there were no significant changes in minimum quantal size and sensitivity of postsynaptic GABA(A) receptors to the GABA(A) receptor agonist muscimol, indicating that this suppression was caused by a decrease in GABA release from presynaptic nerve terminals. Application of CB1 synthetic agonist WIN55212-2 (mesylate(R)-(+)-[2,3-dihydro-5-methyl-3-[4-morpholino)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthyl)methanone) or endocannabinoid 2-arachidonoylglycerol also suppressed the spontaneous IPSC. The inhibitory effect of DHPG on spontaneous IPSCs was abolished by SR-141716 (5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide), a CB1 receptor antagonist. Furthermore, postsynaptic application of GDP-betaS blocked the DHPG-induced inhibition of spontaneous IPSCs, indicating the involvement of endcannabinoid-mediated retrograde synaptic signaling. These results provide solid evidence for retrograde signaling from postsynaptic group I mGluRs to presynaptic CB1 receptors, which induces presynaptic inhibition of GABA release in rat hippocampal CA3 region.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources