Dynamic causal modelling: a critical review of the biophysical and statistical foundations
- PMID: 19961941
- DOI: 10.1016/j.neuroimage.2009.11.062
Dynamic causal modelling: a critical review of the biophysical and statistical foundations
Abstract
The goal of dynamic causal modelling (DCM) of neuroimaging data is to study experimentally induced changes in functional integration among brain regions. This requires (i) biophysically plausible and physiologically interpretable models of neuronal network dynamics that can predict distributed brain responses to experimental stimuli and (ii) efficient statistical methods for parameter estimation and model comparison. These two key components of DCM have been the focus of more than thirty methodological articles since the seminal work of Friston and colleagues published in 2003. In this paper, we provide a critical review of the current state-of-the-art of DCM. We inspect the properties of DCM in relation to the most common neuroimaging modalities (fMRI and EEG/MEG) and the specificity of inference on neural systems that can be made from these data. We then discuss both the plausibility of the underlying biophysical models and the robustness of the statistical inversion techniques. Finally, we discuss potential extensions of the current DCM framework, such as stochastic DCMs, plastic DCMs and field DCMs.
Copyright © 2009 Elsevier Inc. All rights reserved.
Similar articles
-
Generalised filtering and stochastic DCM for fMRI.Neuroimage. 2011 Sep 15;58(2):442-57. doi: 10.1016/j.neuroimage.2011.01.085. Epub 2011 Feb 17. Neuroimage. 2011. PMID: 21310247
-
Critical comments on dynamic causal modelling.Neuroimage. 2012 Feb 1;59(3):2322-9. doi: 10.1016/j.neuroimage.2011.09.025. Epub 2011 Sep 22. Neuroimage. 2012. PMID: 22001162
-
Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task.Neuroimage. 2016 Jan 1;124(Pt A):498-508. doi: 10.1016/j.neuroimage.2015.08.052. Epub 2015 Aug 31. Neuroimage. 2016. PMID: 26334836
-
Dynamic causal modeling for EEG and MEG.Hum Brain Mapp. 2009 Jun;30(6):1866-76. doi: 10.1002/hbm.20775. Hum Brain Mapp. 2009. PMID: 19360734 Free PMC article. Review.
-
Modelling functional integration: a comparison of structural equation and dynamic causal models.Neuroimage. 2004;23 Suppl 1:S264-74. doi: 10.1016/j.neuroimage.2004.07.041. Neuroimage. 2004. PMID: 15501096 Review.
Cited by
-
Distinct Mechanism of Audiovisual Integration With Informative and Uninformative Sound in a Visual Detection Task: A DCM Study.Front Comput Neurosci. 2019 Aug 29;13:59. doi: 10.3389/fncom.2019.00059. eCollection 2019. Front Comput Neurosci. 2019. PMID: 31555115 Free PMC article.
-
Effective connectivity: influence, causality and biophysical modeling.Neuroimage. 2011 Sep 15;58(2):339-61. doi: 10.1016/j.neuroimage.2011.03.058. Epub 2011 Apr 6. Neuroimage. 2011. PMID: 21477655 Free PMC article.
-
LFP and oscillations-what do they tell us?Curr Opin Neurobiol. 2015 Apr;31:1-6. doi: 10.1016/j.conb.2014.05.004. Epub 2014 Jul 30. Curr Opin Neurobiol. 2015. PMID: 25079053 Free PMC article. Review.
-
The functional architectures of addition and subtraction: Network discovery using fMRI and DCM.Hum Brain Mapp. 2017 Jun;38(6):3210-3225. doi: 10.1002/hbm.23585. Epub 2017 Mar 27. Hum Brain Mapp. 2017. PMID: 28345153 Free PMC article.
-
Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression.Front Hum Neurosci. 2016 Nov 15;10:550. doi: 10.3389/fnhum.2016.00550. eCollection 2016. Front Hum Neurosci. 2016. PMID: 27895566 Free PMC article.