Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;31(8):2141-52.
doi: 10.1016/j.biomaterials.2009.11.070. Epub 2009 Dec 4.

The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering

Affiliations

The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering

Wenda Dai et al. Biomaterials. 2010 Mar.

Abstract

3D biodegradable porous scaffold plays a very important role in articular cartilage tissue engineering. We developed hybrid structures of 3D scaffolds that combined the advantages of natural type I collagen and synthetic PLGA knitted mesh. The mechanically strong PLGA mesh served as a skeleton while the collagen microsponges facilitated cell seeding and tissue formation. The scaffolds were divided into 3 groups: (1) THIN: collagen microsponge formed in interstices of PLGA mesh; (2) SEMI: collagen microsponge formed on one side of PLGA mesh; (3) SANDWICH: collagen sponge formed on both sides of PLGA mesh. Bovine chondrocytes were cultured in these scaffolds and transplanted subcutaneously into nude mice for 2, 4, and 8 weeks. All three groups of transplants showed homogeneous cell distribution, natural chondrocyte morphology, and abundant cartilaginous ECM deposition. Production of GAGs per DNA and the expression of type II collagen and aggrecan mRNA were much higher in the SEMI and SANDWICH groups than in the THIN group. When compared to native articular cartilage, the mechanical strength of the engineered cartilage reached 54.8%, 49.3% in Young's modulus and 68.8%, 62.7% in stiffness, respectively, in SEMI and SANDWICH. These scaffolds could be used for the tissue engineering of articular cartilage with adjustable thickness. The design of the hybrid structures provides a strategy for the preparation of 3D porous scaffolds.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources