Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 15;175(1-3):1062-7.
doi: 10.1016/j.jhazmat.2009.10.119. Epub 2009 Nov 10.

Formation of Fe-sulfides in cultures of sulfate-reducing bacteria

Affiliations

Formation of Fe-sulfides in cultures of sulfate-reducing bacteria

Jonathan P Gramp et al. J Hazard Mater. .

Abstract

The purpose of this study was to synthesize Fe-sulfides produced with sulfate-reducing bacteria under experimental laboratory conditions. Fe-sulfides were precipitated with biologically produced sulfide in cultures growing at 22, 45, and 60 degrees C for up to 16 weeks. Abiotic controls were prepared by reacting liquid media with Na(2)S solutions. Precipitates were collected anaerobically, freeze-dried and analyzed by X-ray diffraction. Additional analyses included total Fe and S content, magnetic susceptibility, specific surface area, and scanning electron microscopy. Mackinawite (FeS) and greigite (Fe(3)S(4)) were the dominant iron sulfide phases formed in sulfate-reducing bacterial cultures. An increase in the incubation temperature from 22 to 60 degrees C enhanced the crystallinity of the Fe-sulfides. Generally, greigite was more prevalent in abiotic samples and mackinawite in biogenic materials. Pyrite (FeS(2)) was also found in abiotic precipitates. Abiotic samples had a higher magnetic susceptibility because of the greigite and displayed improved crystallinity compared to biotic materials.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources