Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 17;165(4):1546-58.
doi: 10.1016/j.neuroscience.2009.11.068. Epub 2009 Dec 3.

Differential effects of electrical stimulation patterns, motivational-behavioral stimuli and their order of application on functional plasticity processes within one input in the dentate gyrus of freely moving rats in vivo

Affiliations

Differential effects of electrical stimulation patterns, motivational-behavioral stimuli and their order of application on functional plasticity processes within one input in the dentate gyrus of freely moving rats in vivo

W Almaguer-Melian et al. Neuroscience. .

Abstract

Hippocampal long-term potentiation (LTP) is a long-lasting increase in synaptic efficacy considered to be the cellular basis of memory. LTP consists of an early, protein synthesis-independent phase (E-LTP) and a late phase that depends on protein synthesis (L-LTP). In water-deprived rats E-LTP in the dentate gyrus (DG) can be reinforced into L-LTP, if the rats were allowed to drink within 15 min after E-LTP induction (behavioral LTP-reinforcement, BR). LTP can be depotentiated by low-frequency stimulation (LFS) to the same synaptic input if applied shortly after tetanization (<10 min). Here, we addressed the question of whether a BR protocol is able to recover LTP at depotentiated synaptic inputs. We show that LTP, depotentiation, LFS and BR specifically interact within one afferent input, which could be explained by the "synaptic tagging" hypothesis outlined by [Frey and Morris (1997) Nature 385:533-536]. E-LTP induced by a weak tetanus (WTET) sets tags in the activated inputs which are able to capture and to process plasticity-related proteins (PRPs) required for L-LTP, the synthesis of which was induced by BR. Synaptic tags could be reset by LFS. BR alone was unable to rescue depotentiated LTP, but the combination of BR and subsequent WTET transformed E-LTP into L-LTP. We show that LTP, LTD and behavioral stimuli alternatively and reversibly affect a single afferent input for long periods of time by LTP as well as LTD mechanisms, competing with each other under the influence of different concurrent stimuli. Affective modulation can shift the balance to one or the other. We show that the result will depend not only on the last stimulus, but on the history of previous stimuli applied to the specific input. Afferent stimuli activate alternative, but partially overlapping cascades with long-lasting consequences for the input including spaced-associative processes of "synaptic tagging" as well as "cross-tagging" which could be demonstrated in single synaptic afferents to one neuronal population in freely behaving animals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources