Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 May;34(3):J220-5.
doi: 10.1016/j.jaut.2009.11.007. Epub 2009 Dec 6.

Coordination of tolerogenic immune responses by the commensal microbiota

Affiliations
Review

Coordination of tolerogenic immune responses by the commensal microbiota

June L Round et al. J Autoimmun. 2010 May.

Abstract

All mammals are born ignorant to the existence of micro-organisms. Soon after birth, however, every mammal begins a lifelong association with a multitude of microbes that lay residence on the skin, mouth, vaginal mucosa and gastrointestinal (GI) tract. Approximately 500-1000 different species of microbes have highly evolved to occupy these bodily niches, with the highest density and diversity occurring within the intestine. These organisms play a vital role in mammalian nutrient breakdown and provide resistance to colonization by pathogenic micro-organisms. More recently, however, studies have demonstrated that the microbiota can have a profound and long-lasting effect on the development of our immune system both inside and outside the intestine. While our immune system has evolved to recognize and eradicate foreign entities, it tolerates the symbiotic micro-organisms of the intestine. How and why this tolerance occurs has remained unclear. Here we present evidence that the commensal microbes of the intestine actively induce tolerant responses from the host that coordinate healthy immune responses. Potentially, disruption of this dialogue between the host and microbe can lead to the development of autoimmune diseases such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), or Type I diabetes (TID). As a wealth of publications have focused on the impact of the microbiota on intestinal immune responses and IBD, this chapter will focus on the extra-intestinal impacts of the microbiota from development to disease and integrate the known mechanisms by which the microbiota is able to actively communicate with its host to promote health.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–8. - PubMed
    1. Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19:59–69. - PubMed
    1. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48. - PubMed
    1. Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO. Development of the Human Infant Intestinal Microbiota. PLoS Biol. 2007;5:e177. - PMC - PubMed
    1. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–9. - PMC - PubMed