An automatic diagnosis system of nuclear cataract using slit-lamp images
- PMID: 19965005
- DOI: 10.1109/IEMBS.2009.5334735
An automatic diagnosis system of nuclear cataract using slit-lamp images
Abstract
An automatic diagnosis system of nuclear cataract is presented in this paper. Nuclear cataract is graded according to the severity of opacity using slit-lamp lens images. Anatomical structure in the lens image is detected using a modified active shape model (ASM). Based on the anatomical landmark, local features are extracted according to clinical grading protocol. Support vector machine (SVM) regression is employed to train a grading model for grade prediction. The system is tested using clinical images and clinical ground truth. More than five thousands slit-lamp images were tested. The success rate of feature extraction is 95% and the mean grading difference is 0.36. The automatic diagnosis system can help to improve the grading objectivity and save the workload of ophthalmologists.
Similar articles
-
A computer-aided diagnosis system of nuclear cataract.IEEE Trans Biomed Eng. 2010 Jul;57(7):1690-8. doi: 10.1109/TBME.2010.2041454. Epub 2010 Feb 17. IEEE Trans Biomed Eng. 2010. PMID: 20172776
-
Towards automatic grading of nuclear cataract.Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:4961-4. doi: 10.1109/IEMBS.2007.4353454. Annu Int Conf IEEE Eng Med Biol Soc. 2007. PMID: 18003120
-
A computer assisted method for nuclear cataract grading from slit-lamp images using ranking.IEEE Trans Med Imaging. 2011 Jan;30(1):94-107. doi: 10.1109/TMI.2010.2062197. Epub 2010 Jul 29. IEEE Trans Med Imaging. 2011. PMID: 20679026
-
Cataract grading systems: a review of past and present.Curr Opin Ophthalmol. 2019 Jan;30(1):13-18. doi: 10.1097/ICU.0000000000000542. Curr Opin Ophthalmol. 2019. PMID: 30489359 Review.
-
Cataract Classification Systems: A Review.Klin Monbl Augenheilkd. 2024 Jan;241(1):75-83. doi: 10.1055/a-2003-2369. Epub 2024 Jan 19. Klin Monbl Augenheilkd. 2024. PMID: 38242135 Review. English.
Cited by
-
The Impact of Artificial Intelligence and Deep Learning in Eye Diseases: A Review.Front Med (Lausanne). 2021 Aug 30;8:710329. doi: 10.3389/fmed.2021.710329. eCollection 2021. Front Med (Lausanne). 2021. PMID: 34527682 Free PMC article. Review.
-
The future of cataract surgery.Eye (Lond). 2025 Jun;39(8):1451-1456. doi: 10.1038/s41433-025-03745-x. Epub 2025 Mar 13. Eye (Lond). 2025. PMID: 40082703 Free PMC article. Review.
-
Multi-Comparison of Different Ocular Imaging Modality-based Deep Learning Models for Visually Significant Cataract Detection.Ophthalmol Sci. 2025 Jun 3;5(6):100837. doi: 10.1016/j.xops.2025.100837. eCollection 2025 Nov-Dec. Ophthalmol Sci. 2025. PMID: 40792062 Free PMC article.
-
Automatic nuclear cataract grading using image gradients.J Med Imaging (Bellingham). 2014 Apr;1(1):014502. doi: 10.1117/1.JMI.1.1.014502. Epub 2014 Jun 4. J Med Imaging (Bellingham). 2014. PMID: 26158024 Free PMC article.
-
Personalized Lens Correction Improves Quantitative Fundus Autofluorescence Analysis.Invest Ophthalmol Vis Sci. 2024 Mar 5;65(3):13. doi: 10.1167/iovs.65.3.13. Invest Ophthalmol Vis Sci. 2024. PMID: 38466288 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources
Medical