Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Feb;260(2 Pt 1):G207-12.
doi: 10.1152/ajpgi.1991.260.2.G207.

Vitamin D-regulated calcium transport in Caco-2 cells: unique in vitro model

Affiliations

Vitamin D-regulated calcium transport in Caco-2 cells: unique in vitro model

A R Giuliano et al. Am J Physiol. 1991 Feb.

Abstract

The human colon adenocarcinoma cell line Caco-2 is the only intestinal cell line to differentiate spontaneously in culture exhibiting structural and biochemical characteristics of mature enterocytes and to possess a vitamin D receptor in the fully differentiated state. Transepithelial calcium transport was characterized in differentiated Caco-2 cells grown on permeable filters supports to assess the potential utility of this cell line as an in vitro model to study 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-induced calcium transport. Calcium transport was increased in a dose-dependent manner by 1,25(OH)2D3. Total calcium transport at different calcium concentrations could be fitted to a modified Michaelis-Menten equation containing a linear transport component. The maximum rate of saturable calcium transport was increased by 4.3-fold (P less than 0.005) in cells treated with 10(-8) M 1,25(OH)2D3. This treatment also increased the apparent buffer calcium concentration that results in half-maximal velocity from 0.4 to 1.3 mM but had no significant effect on nonsaturable calcium transport. Caco-2 cells grown on permeable filter supports provide a unique in vitro human cell culture model to study the mechanism of vitamin D-regulated transepithelial intestinal calcium transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources