Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 11;29(10):1553-60.
doi: 10.1038/onc.2009.435. Epub 2009 Dec 7.

Rapamycin inhibits oncogenic intestinal ion channels and neoplasia in APC(Min/+) mice

Affiliations

Rapamycin inhibits oncogenic intestinal ion channels and neoplasia in APC(Min/+) mice

G E Koehl et al. Oncogene. .

Abstract

The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis. Mice with a heterozygous APC(Min) mutation develop multiple intestinal neoplasia (Min) leading to premature death. Early in colorectal carcinogenesis, APC(Min/+) mice show enhanced Akt-mammalian target of rapamycin (mTOR) signaling, which is paralleled by upregulation of oncogenic K(+) channels. In this study, we tested the effect of mTOR inhibition with rapamycin on tumor formation in APC(Min/+) mice and evaluated ion channel regulation. We found that continuous long-term rapamycin treatment of APC(Min/+) mice dramatically inhibits intestinal neoplasia. Moreover, although untreated APC(Min/+) mice lose weight, experience intestinal bleeding and succumb to multiple neoplasia by 22.3+/-1.4 weeks of age, mice treated with rapamycin maintain stable weight and survive long term (39.6+/-3.4 weeks), with more than 30% surviving >1 year. Impressively, abnormalities in colonic electrolyte transport typical for APC(Min/+) mice are abolished, along with the suppression of epithelial Na(+) channel (ENaC) and oncogenic K(+) ion channels BK, Elk1 and Erg1, both functionally and at mRNA levels. These results show that continuous prophylaxis by rapamycin markedly inhibits the development of APC mutation-related polyposis, and suggest a novel contributing mechanism of action through the blockade of intestinal oncogenic ion channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources