Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan;77(1):117-20.
doi: 10.1111/j.1365-2141.1991.tb07957.x.

K+ efflux in deoxygenated sickle cells in the presence or absence of DIOA, a specific inhibitor of the [K+, Cl-] cotransport system

Affiliations

K+ efflux in deoxygenated sickle cells in the presence or absence of DIOA, a specific inhibitor of the [K+, Cl-] cotransport system

O Olivieri et al. Br J Haematol. 1991 Jan.

Abstract

The ouabain bumetanide resistant (OBR) K+ efflux was investigated in deoxygenated sickle cells in comparison to oxygenated ones, by using a specific inhibitor of the [K+, Cl-] co-transport system, [(DihydroIndenyl)Oxy] Alkanoic acid (DIOA). A DIOA sensitive and a DIOA resistant K+ efflux were measured in deoxygenated sickle cells. The DIOA sensitive K+ efflux shared the properties of the [K+, Cl-] co-transport system, being stimulated by decreased pH and hypoosmolarity. This DIOA sensitive K+ efflux represented 70% of the total K+ efflux at pH 7.0 and at low pO2 (10-15 mmHg). Thus, a small reduction in Ph effectively stimulated the [K+, Cl-] co-transport system in deoxygenated condition, and this may contribute significantly to the sickle cell dehydration. We conclude that at pH lower than 7.4, the [K+, Cl-] co-transport system is permanently activated in sickle cells and leads to sickle cell dehydration in both oxygenated and deoxygenated conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources