Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Mar;40(3):310-4.
doi: 10.2337/diab.40.3.310.

Newly identified pancreatic protein islet amyloid polypeptide. What is its relationship to diabetes?

Affiliations
Review

Newly identified pancreatic protein islet amyloid polypeptide. What is its relationship to diabetes?

K H Johnson et al. Diabetes. 1991 Mar.

Abstract

Islet amyloid polypeptide (IAPP) or amylin is a newly identified 37-amino acid COOH-terminal-amidated polypeptide that is the major protein constituent of amyloid deposits in insulinomas and amyloid deposits in pancreatic islets of non-insulin-dependent (type II) diabetic humans and adult diabetic cats. IAPP is stored with insulin in beta-cell secretory vesicles and is cosecreted with insulin in response to glucose and several secretagogues. IAPP has been demonstrated in normal pancreatic islets of many species, but IAPP-derived amyloid develops commonly in the islets of only a few species (e.g., humans and cats), especially in association with age-related diabetes. IAPP from the human and cat inherently contains a short amyloidogenic sequence that is not present in species that do not form islet amyloid. Studies in animals indicate that an aberration in the synthesis or processing of IAPP, leading to a local increase in concentration of IAPP in the islet, is also required to facilitate the conversion of IAPP to amyloid. The formation of islet amyloid may contribute to the development of type II diabetes by causing disruption of islet cells and by replacement of islets. It has also been proposed that an abnormality of IAPP homeostasis underlies the pathogenesis of type II diabetes. A significant causal relationship between IAPP and type II diabetes is based on reports that IAPP inhibits glucose-stimulated insulin release by beta-cells and that IAPP inhibits insulin-stimulated rates of glycogen synthesis and glucose uptake by skeletal muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources