Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar 5;266(7):4531-7.

A specific type of ganglioside as a modulator of insulin-dependent cell growth and insulin receptor tyrosine kinase activity. Possible association of ganglioside-induced inhibition of insulin receptor function and monocytic differentiation induction in HL-60 cells

Affiliations
  • PMID: 1999434
Free article

A specific type of ganglioside as a modulator of insulin-dependent cell growth and insulin receptor tyrosine kinase activity. Possible association of ganglioside-induced inhibition of insulin receptor function and monocytic differentiation induction in HL-60 cells

H Nojiri et al. J Biol Chem. .
Free article

Abstract

Insulin-dependent cell growth has been correlated with insulin receptor function, particularly receptor-associated kinase activity, in in vitro studies. The insulin-dependent phosphorylation of the 95-kDa receptor subunit was clearly inhibited, in a concentration-dependent manner, by the presence of unbranched neolacto series gangliosides having a NeuAc2----3Gal terminus, particularly 2----3-sialosylparagloboside (2----3SPG; IV3NeuAc-nLc4), but not by other gangliosides with a NeuAc2----6Gal terminus or by branched neolacto series gangliosides (e.g. G10). Such inhibition of phosphorylation was minimal with ganglio series gangliosides and negligible with sphingosine, neutral glycolipids, or sulfatide. 2----3SPG did not affect insulin binding to the insulin receptor. Insulin-dependent cell growth and its inhibition by 2----3SPG were observed in three human cell lines so far tested: lymphoid cell line IM9, promyelocytic leukemia cell line HL-60, and erythroleukemia cell line K562. Since IM9 cells contain a much higher quantity of insulin receptor than do HL-60 or K562 cells, insulin-dependent receptor phosphorylation and its inhibition by 2----3SPG in intact cells were clearly observed with IM9 cells. Receptor phosphorylation in intact cells was inhibited when cells were preincubated in the presence of 2----3SPG. Insulin-dependent growth of HL-60 and K562 cells was also inhibited by prolonged culture (96-144 h) with exogenous 2----3SPG. Subsequent to the inhibition of insulin-dependent HL-60 cell growth, a remarkable phenotypic transformation was observed, i.e. changes in morphology, enzymes, and cell-surface markers to those characteristic of monocytes. The level of 2----3SPG in HL-60 cells increased when cells were cultured with 1 alpha,25-dihydroxyvitamin D3 to the same degree seen in cells cultured with 5 microM 2----3SPG. Both these treatments led to inhibition of insulin-dependent cell growth, followed by induction of monocytic differentiation. Thus, the cellular level of 2----3SPG may modulate insulin-dependent cell growth and define the lineage specificity of differentiation through modulation of receptor-associated kinase activity.

PubMed Disclaimer

Publication types

LinkOut - more resources