Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar 5;266(7):4648-53.

Hyoscyamine 6 beta-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root

Affiliations
  • PMID: 1999440
Free article

Hyoscyamine 6 beta-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root

T Hashimoto et al. J Biol Chem. .
Free article

Abstract

Hyoscyamine 6 beta-hydroxylase (H6H; EC 1.14.11.11) catalyzes the first reaction in the biosynthetic pathway from hyoscyamine to scopolamine in several solanaceous plants. Four monoclonal antibodies were raised against H6H purified from cultured roots of Hyoscyamus niger. The IgG1 antibody mAb5 inhibited H6H activities present in cell-free extracts of H. niger roots and specifically recognized 38-40-kDa proteins from six different scopolamine-producing plant species in Western blot analysis after sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The other three monoclonal antibodies all recognized SDS-denatured H6H protein from Hyoscyamus species, but did not bind to native H6H. Western blot analysis of protein extracts from various tissues of H. niger using these antibodies showed that H6H is abundant in cultured roots, present in plant roots, but absent in leaf, stem, calyx, cultured cells, and cultured shoots. Immunohistochemical studies using monoclonal antibody and immunogold-silver enhancement detected H6H only in the pericycle cells of the young root in several scopolamine-producing plants. Mature roots that underwent secondary growth and lacked the pericycle did not react with the antibody. This pericycle-specific localization of scopolamine biosynthesis provides an anatomical explanation for the tissue-specific biosynthesis of tropane alkaloids and may be important for translocation of tropane alkaloids from the root to the aerial parts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources