PhosSNP for systematic analysis of genetic polymorphisms that influence protein phosphorylation
- PMID: 19995808
- PMCID: PMC2860229
- DOI: 10.1074/mcp.M900273-MCP200
PhosSNP for systematic analysis of genetic polymorphisms that influence protein phosphorylation
Abstract
We are entering the era of personalized genomics as breakthroughs in sequencing technology have made it possible to sequence or genotype an individual person in an efficient and accurate manner. Preliminary results from HapMap and other similar projects have revealed the existence of tremendous genetic variations among world populations and among individuals. It is important to delineate the functional implication of such variations, i.e. whether they affect the stability and biochemical properties of proteins. It is also generally believed that the genetic variation is the main cause for different susceptibility to certain diseases or different response to therapeutic treatments. Understanding genetic variation in the context of human diseases thus holds the promise for "personalized medicine." In this work, we carried out a genome-wide analysis of single nucleotide polymorphisms (SNPs) that could potentially influence protein phosphorylation characteristics in human. Here, we defined a phosphorylation-related SNP (phosSNP) as a non-synonymous SNP (nsSNP) that affects the protein phosphorylation status. Using an in-house developed kinase-specific phosphorylation site predictor (GPS 2.0), we computationally detected that approximately 70% of the reported nsSNPs are potential phosSNPs. More interestingly, approximately 74.6% of these potential phosSNPs might also induce changes in protein kinase types in adjacent phosphorylation sites rather than creating or removing phosphorylation sites directly. Taken together, we proposed that a large proportion of the nsSNPs might affect protein phosphorylation characteristics and play important roles in rewiring biological pathways. Finally, all phosSNPs were integrated into the PhosSNP 1.0 database, which was implemented in JAVA 1.5 (J2SE 5.0). The PhosSNP 1.0 database is freely available for academic researchers.
Figures




Similar articles
-
Reconfiguring phosphorylation signaling by genetic polymorphisms affects cancer susceptibility.J Mol Cell Biol. 2015 Jun;7(3):187-202. doi: 10.1093/jmcb/mjv013. Epub 2015 Feb 26. J Mol Cell Biol. 2015. PMID: 25722345
-
Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.).Int J Mol Sci. 2016 Nov 11;17(11):1738. doi: 10.3390/ijms17111738. Int J Mol Sci. 2016. PMID: 27845739 Free PMC article.
-
Identification of Phosphorylation Associated SNPs for Blood Pressure, Coronary Artery Disease and Stroke from Genome-wide Association Studies.Curr Mol Med. 2019;19(10):731-738. doi: 10.2174/1566524019666190828151540. Curr Mol Med. 2019. PMID: 31456518
-
Approaches and resources for prediction of the effects of non-synonymous single nucleotide polymorphism on protein function and interactions.Curr Pharm Biotechnol. 2008 Apr;9(2):123-33. doi: 10.2174/138920108783955164. Curr Pharm Biotechnol. 2008. PMID: 18393868 Review.
-
Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes.Neuroscience. 2007 Apr 14;145(4):1273-9. doi: 10.1016/j.neuroscience.2006.09.004. Epub 2006 Oct 19. Neuroscience. 2007. PMID: 17055652 Review.
Cited by
-
Functional annotation of Alzheimer's disease associated loci revealed by GWASs.PLoS One. 2017 Jun 26;12(6):e0179677. doi: 10.1371/journal.pone.0179677. eCollection 2017. PLoS One. 2017. PMID: 28650998 Free PMC article.
-
Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation.PLoS One. 2011;6(12):e28228. doi: 10.1371/journal.pone.0028228. Epub 2011 Dec 2. PLoS One. 2011. PMID: 22164248 Free PMC article.
-
Biological databases for human research.Genomics Proteomics Bioinformatics. 2015 Feb;13(1):55-63. doi: 10.1016/j.gpb.2015.01.006. Epub 2015 Feb 21. Genomics Proteomics Bioinformatics. 2015. PMID: 25712261 Free PMC article. Review.
-
Associations between potentially functional CORIN SNPs and serum corin levels in the Chinese Han population.BMC Genet. 2019 Dec 19;20(1):99. doi: 10.1186/s12863-019-0802-4. BMC Genet. 2019. PMID: 31856714 Free PMC article.
-
Why SNP rs3755955 is associated with human bone mineral density? A molecular and cellular study in bone cells.Mol Cell Biochem. 2022 Feb;477(2):455-468. doi: 10.1007/s11010-021-04292-1. Epub 2021 Nov 16. Mol Cell Biochem. 2022. PMID: 34783964
References
-
- Cargill M., Altshuler D., Ireland J., Sklar P., Ardlie K., Patil N., Shaw N., Lane C. R., Lim E. P., Kalyanaraman N., Nemesh J., Ziaugra L., Friedland L., Rolfe A., Warrington J., Lipshutz R., Daley G. Q., Lander E. S. (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet 22, 231–238 - PubMed
-
- Collins F. S., Brooks L. D., Chakravarti A. (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8, 1229–1231 - PubMed
-
- Frazer K. A., Ballinger D. G., Cox D. R., Hinds D. A., Stuve L. L., Gibbs R. A., Belmont J. W., Boudreau A., Hardenbol P., Leal S. M., Pasternak S., Wheeler D. A., Willis T. D., Yu F., Yang H., Zeng C., Gao Y., Hu H., Hu W., Li C., Lin W., Liu S., Pan H., Tang X., Wang J., Wang W., Yu J., Zhang B., Zhang Q., Zhao H., Zhao H., Zhou J., Gabriel S. B., Barry R., Blumenstiel B., Camargo A., Defelice M., Faggart M., Goyette M., Gupta S., Moore J., Nguyen H., Onofrio R. C., Parkin M., Roy J., Stahl E., Winchester E., Ziaugra L., Altshuler D., Shen Y., Yao Z., Huang W., Chu X., He Y., Jin L., Liu Y., Shen Y., Sun W., Wang H., Wang Y., Wang Y., Xiong X., Xu L., Waye M. M., Tsui S. K., Xue H., Wong J. T., Galver L. M., Fan J. B., Gunderson K., Murray S. S., Oliphant A. R., Chee M. S., Montpetit A., Chagnon F., Ferretti V., Leboeuf M., Olivier J. F., Phillips M. S., Roumy S., Sallée C., Verner A., Hudson T. J., Kwok P. Y., Cai D., Koboldt D. C., Miller R. D., Pawlikowska L., Taillon-Miller P., Xiao M., Tsui L. C., Mak W., Song Y. Q., Tam P. K., Nakamura Y., Kawaguchi T., Kitamoto T., Morizono T., Nagashima A., Ohnishi Y., Sekine A., Tanaka T., Tsunoda T., Deloukas P., Bird C. P., Delgado M., Dermitzakis E. T., Gwilliam R., Hunt S., Morrison J., Powell D., Stranger B. E., Whittaker P., Bentley D. R., Daly M. J., de Bakker P. I., Barrett J., Chretien Y. R., Maller J., McCarroll S., Patterson N., Pe'er I., Price A., Purcell S., Richter D. J., Sabeti P., Saxena R., Schaffner S. F., Sham P. C., Varilly P., Altshuler D., Stein L. D., Krishnan L., Smith A. V., Tello-Ruiz M. K., Thorisson G. A., Chakravarti A., Chen P. E., Cutler D. J., Kashuk C. S., Lin S., Abecasis G. R., Guan W., Li Y., Munro H. M., Qin Z. S., Thomas D. J., McVean G., Auton A., Bottolo L., Cardin N., Eyheramendy S., Freeman C., Marchini J., Myers S., Spencer C., Stephens M., Donnelly P., Cardon L. R., Clarke G., Evans D. M., Morris A. P., Weir B. S., Tsunoda T., Mullikin J. C., Sherry S. T., Feolo M., Skol A., Zhang H., Zeng C., Zhao H., Matsuda I., Fukushima Y., Macer D. R., Suda E., Rotimi C. N., Adebamowo C. A., Ajayi I., Aniagwu T., Marshall P. A., Nkwodimmah C., Royal C. D., Leppert M. F., Dixon M., Peiffer A., Qiu R., Kent A., Kato K., Niikawa N., Adewole I. F., Knoppers B. M., Foster M. W., Clayton E. W., Watkin J., Gibbs R. A., Belmont J. W., Muzny D., Nazareth L., Sodergren E., Weinstock G. M., Wheeler D. A., Yakub I., Gabriel S. B., Onofrio R. C., Richter D. J., Ziaugra L., Birren B. W., Daly M. J., Altshuler D., Wilson R. K., Fulton L. L., Rogers J., Burton J., Carter N. P., Clee C. M., Griffiths M., Jones M. C., McLay K., Plumb R. W., Ross M. T., Sims S. K., Willey D. L., Chen Z., Han H., Kang L., Godbout M., Wallenburg J. C., L'Archevêque P., Bellemare G., Saeki K., Wang H., An D., Fu H., Li Q., Wang Z., Wang R., Holden A. L., Brooks L. D., McEwen J. E., Guyer M. S., Wang V. O., Peterson J. L., Shi M., Spiegel J., Sung L. M., Zacharia L. F., Collins F. S., Kennedy K., Jamieson R., Stewart J. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 - PMC - PubMed
-
- Redon R., Ishikawa S., Fitch K. R., Feuk L., Perry G. H., Andrews T. D., Fiegler H., Shapero M. H., Carson A. R., Chen W., Cho E. K., Dallaire S., Freeman J. L., González J. R., Gratacòs M., Huang J., Kalaitzopoulos D., Komura D., MacDonald J. R., Marshall C. R., Mei R., Montgomery L., Nishimura K., Okamura K., Shen F., Somerville M. J., Tchinda J., Valsesia A., Woodwark C., Yang F., Zhang J., Zerjal T., Zhang J., Armengol L., Conrad D. F., Estivill X., Tyler-Smith C., Carter N. P., Aburatani H., Lee C., Jones K. W., Scherer S. W., Hurles M. E. (2006) Global variation in copy number in the human genome. Nature 444, 444–454 - PMC - PubMed
-
- Hinds D. A., Stuve L. L., Nilsen G. B., Halperin E., Eskin E., Ballinger D. G., Frazer K. A., Cox D. R. (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources