Activity-independent specification of synaptic targets in the posterior lateral line of the larval zebrafish
- PMID: 19996172
- PMCID: PMC2790364
- DOI: 10.1073/pnas.0912082106
Activity-independent specification of synaptic targets in the posterior lateral line of the larval zebrafish
Abstract
The development of functional neural circuits requires that connections between neurons be established in a precise manner. The mechanisms by which complex nervous systems perform this daunting task remain largely unknown. In the posterior lateral line of larval zebrafish, each afferent neuron forms synaptic contacts with hair cells of a common hair-bundle polarity. We investigated whether afferent neurons distinguish hair-cell polarities by analyzing differences in the synaptic signaling between oppositely polarized hair cells. By examining two mutant zebrafish lines with defects in mechanoelectrical transduction, and by blocking transduction during the development of wild-type fish, we found that afferent neurons could form specific synapses in the absence of stimulus-evoked patterns of synaptic release. Asking next whether this specificity arises through intrinsically generated patterns of synaptic release, we found that the polarity preference persisted in two mutant lines lacking essential synaptic proteins. These results indicate that lateral-line afferent neurons do not require synaptic activity to distinguish hair-cell polarities and suggest that molecular labels of hair-cell polarity guide prepatterned afferents to form the appropriate synapses.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Specificity of afferent synapses onto plane-polarized hair cells in the posterior lateral line of the zebrafish.J Neurosci. 2008 Aug 20;28(34):8442-53. doi: 10.1523/JNEUROSCI.2425-08.2008. J Neurosci. 2008. PMID: 18716202 Free PMC article.
-
Sensory adaptation at ribbon synapses in the zebrafish lateral line.J Physiol. 2021 Aug;599(15):3677-3696. doi: 10.1113/JP281646. Epub 2021 Jul 9. J Physiol. 2021. PMID: 34047358 Free PMC article.
-
Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation.PLoS One. 2009;4(2):e4477. doi: 10.1371/journal.pone.0004477. Epub 2009 Feb 18. PLoS One. 2009. PMID: 19223970 Free PMC article.
-
Structure and function of the hair cell ribbon synapse.J Membr Biol. 2006 Feb-Mar;209(2-3):153-65. doi: 10.1007/s00232-005-0854-4. Epub 2006 May 25. J Membr Biol. 2006. PMID: 16773499 Free PMC article. Review.
-
The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery.Hear Res. 2016 Jun;336:1-16. doi: 10.1016/j.heares.2016.03.011. Epub 2016 Mar 25. Hear Res. 2016. PMID: 27018296 Review.
Cited by
-
Early development of hearing in zebrafish.J Assoc Res Otolaryngol. 2013 Aug;14(4):509-21. doi: 10.1007/s10162-013-0386-z. Epub 2013 Apr 11. J Assoc Res Otolaryngol. 2013. PMID: 23575600 Free PMC article.
-
Cellular projections from sensory hair cells form polarity-specific scaffolds during synaptogenesis.Genes Dev. 2015 May 15;29(10):1087-94. doi: 10.1101/gad.259838.115. Genes Dev. 2015. PMID: 25995190 Free PMC article.
-
There and back again: development and regeneration of the zebrafish lateral line system.Wiley Interdiscip Rev Dev Biol. 2015 Jan-Feb;4(1):1-16. doi: 10.1002/wdev.160. Epub 2014 Oct 20. Wiley Interdiscip Rev Dev Biol. 2015. PMID: 25330982 Free PMC article. Review.
-
Ribbon synapses in zebrafish hair cells.Hear Res. 2015 Dec;330(Pt B):170-7. doi: 10.1016/j.heares.2015.04.003. Epub 2015 Apr 25. Hear Res. 2015. PMID: 25916266 Free PMC article. Review.
-
Mathematical Modeling and Analyses of Interspike-Intervals of Spontaneous Activity in Afferent Neurons of the Zebrafish Lateral Line.Sci Rep. 2018 Oct 5;8(1):14851. doi: 10.1038/s41598-018-33064-z. Sci Rep. 2018. PMID: 30291277 Free PMC article.
References
-
- Benson DL, Colman DR, Huntley GW. Molecules, maps and synapse specificity. Nat Rev Neurosci. 2001;2:899–909. - PubMed
-
- Goodman CS, Shatz CJ. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell. 1993;72(Suppl):77–98. - PubMed
-
- Dickson BJ. Molecular mechanisms of axon guidance. Science. 2002;298:1959–1964. - PubMed
-
- Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996;274:1123–1133. - PubMed
-
- Trachtenberg JT, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002;420:788–794. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases